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ABSTRACT 

Absolute i n t e n s i t i e s  of pfonfc and muonfc x-ray transftfoas 

6 i n  L i  , ~ e ' ,  C ,  0 ,  Mg, and  Ti  have been measured i n  th in ,  elemental 

t a rge ts  (except f o r  H20) using Si(Li) and Ge(Li) spectmmeters. The 

pionic K-transitions i n  t a rge t s  with Z - < 8 and L-traneitions in a11 

6 
t a rge ts  except L i  a r e  examined i n  order t o  study the absonption pro- 

cess of negative pions i n  complex nuclei .  

A pfonfe-cascade calculation which was constrained to repro- 

duce the observed y ie lds  predicted population probabi l i t i es  for the 

lower leve ls  of the  mesic atoms and gave values f o r  the  stn0w.g- 

interact ion l eve l  widths. It was a l so  used t o  predict  en nuclear cap- 

6 t u r e  schedule f o r  71- i n  E i  . The 2p-level broadenings a r e  C u , O l ~ O ,  005 eV 

16 f o r  Lf6, 0.lM0.03 - e V  f o r  I3e9, 2.6+0.9 - eV f o r  c", and 12+4 - eV fo r  O a 

The Pa t te r  two r e su l t s  a r e  a fac tor  of 2.5 l a rge r  than the values ob- 

tained i n  a recent experiment which employed somewhat different tech- 

niques. The present r e su l t s  a r e  fn  sa t i s fac tory  agreement w i t h  pre- 

dic t ions  based on a phenomenoPogical op t i ca l  po ten t ia l  whose constant 

parmeters  had been dete ed f r o m  selected pionfc x-ray data,  The 

parmeters  f o r  the haginan'y par t  of  t h i s  po ten t ia l  are l a rge r  by a 

fac tor  of Lwc ehan those predicted by the  quasi-deuteron c3lbeoqtioa 



1. INTRODUCTION 

Transitions i n  mesfc atoms m d  the interact ion of the  bound- 

Pstate meson with the  nucleus have been the  object  of considerable 

1 a t t en t ion  over the  past  two decades. Low energy negative mesons corn- 

ing to  rest i n  a ta rge t  typical ly  become bound t o  a ta rge t  atom i n  the 

f i n a l  s tep  of t he  slowing-down process. Trmsl t fons  which occur i n  the  

cascade toward the  atomfc ground s t a t e  r e s u l t  in the emission of Auger 

e lectrons and x rays. The energy, l i n e  width, and in t ens i ty  of the  

~ :Rarac t e r f s t i c  x rays have been measured t o  obtain i n f o m e i o n  on 

naueleam: r a d i i ,  nuclear moments, the  meson mss, and pion-nucleus in te r -  

act ion parameters. Pn p a r t i c d a r  the in tens i ty  o r  yie ld  of a given 

pionie t rans i t ion ,  defined a s  the  number of emitted x rays per stopped 

meson, can be used t o  explore the cascade scheme and the absorgtfve pa r t  

of the  pion-ucle~as interactfom. 

The discovery of the  "missing x ray" anomaly2 suggested tha t  

the y ie lds  i n  low-Z elements @ o d d  not be predicted from known atomfc 

cascade processes. Several e ~ p e r i m e n t a l ~ - ~  and theore t ica l  '-I4 studies  , 
stimulated i n  pa r t  by t h i s  dfscovexy, have been directed toward under- 

seandfng the processes which influence the  cascade l n  mesic atoms. 

These s tudies  a r e  of i n t e r e s t  despite recent corrections 15'16 of the 

e a r l i e r  experimental data. 

If the  zptolo39c processes are suf f lc fen t ly  well  understood t o  

allow rm accurate prediction of the  population pmbabi l i ty  PnQ of the  



atomic l eve l  characterized by (n,R), then the pionie x-ray yield Ynp. 
nW&* 

(radiative) f o r  the mesfc t ransi t fon (n,ll)+(nv9Q9) provides a d i rec t  

measure of the  nuclear capture r a t e  P' (cap) from the f n i t i a l  state, If nll 

the yield is  written i n  the form 

then 

where 

nvR9 
nvR' ' n ~  %R bad)  

=nR (rad) = rnk(cap) + rnR(e.m.) 

C nB"aO" 

FnR(e.m.) = (radiative) + (auger) 

is the t o t a l  electromagnetic decay ra te ,  the summation being over a l l  

allowed f i n a l  s t a t e s .  Only electric-dipole trgltasitions a re  eonasidexed 

i n  the calculation of mR(e.m.) since the r a t e s  fo r  the higher-arder 

multipoles a re  i n s i p i f f c a n t  i n  comparison. These El ra t e s  are gener- 

a l l y  caEcuPated using hydrogenic wave fmctioms f o r  the pfonic bomd 

s t a t e s .  However, for  K-series t rans i t ions  the re la t ive ly  large strong- 

interact-lon d is tor t ion  of the 1s-state wave function m&es necssaav  a 

m r e  exact treatment even fo r  low-Z elements. The non-radiative pro- 

cesses of coPlisional (external) Auger t rans i t ions ,  Stark mixing, and 

meson decay a re  ignored because t h e i r  con t r ib~ t i0nS  t o  tbe tatal decay 

r a t e  a re  negl igible  f o r  the  mesic leve ls  of in te res t .  PO 

The yield UIpR n v R f  (lad) is  measured experimentally and PnQ de- 

duced from e i the r  atonrPc-cascade crPPculatBc~ns, sr obsewaticna sf other 



x-ray t r m s i t i o n s ,  o r  both. The nuclear  capture r a t e  o r ,  equivalently,  

t h e  level width can i n  t h i s  way be determined f o r  levels whose broaden- 

ing i s  too small t o  be measured d i rec t ly ,17  and the  range over which 

theore t icaP p red ic t ions  may be t e s t e d  e m  thus be extended, 

Recent experiments 19920 as i n t e r p r e t e d  by Kre l l  and Ericson 
2 4 

indica ted  t h a t  e i t h e r  t h e i r  t h e o r e t i c a l  m d e l  does no t  sat%sBactoriEy 

descr ibe  ehe Lp-state widths f o r  a l l  elements o r  a s y s t e m t i c  ,8exIcertaintg 

e x i s t s  f n  one o r  both of t h e  experimental methods used t o  detenuaiine these 

wf d t h ~ ,  

Because t h e  most dramatic discrepaumcies e x i s t e d  f o r  elmtents 

with Z - < B l ,  i t  was t h e  primary purpose sf t h e  present  fnves t lgat fon t o  

d e t e d n e  t h e  2p-state widths of se lec ted  elements %la t h f s  region with 

an experimental technique d i f f e r e n t  from t h a t  of Refs, 19, 20, The 2p- 

6 9 
l e v e l  w%$ths f o r  L i  and Be repor ted  he re  are eonsistene with recent ly  

reported values  l6 Y 20 from o t h e r  l abora to r ies ,  while t h e  prevf ously pub- 

lished'' 2p-level widths i n  C and O are s u b s t a n t i a l l y  smaller tlran those 

obtained i n  t h e  present  fnves t igat fon.  The results sf t h e  present work 

compare favorably t o  p red ic t ions  based on an o p t i c a l  p o t e n t i a l  whose 

eonstant  parameters have been previously determined from se lec ted  p ionic  

x-ray data.  However, t h e  values  of t h e  parameters f o r  the  absorptive 

p a r t  of t h e  p o t e n t i a l  are i n  disagreement with t h e  p red ic t ions  o f  KrePl 

and Erfcson which are based on t h e  quasi-deutemn m d e i .  A aecondav 

purpose of t h i s  inves t iga t ion  was t o  determine t h e  eapture schedule for 

6 
T- i n  L i  f o r  which no previous measurements e x i s t ,  The capture eched- 

d e a  are of p a r t P c d a r  hterest  t o  those engaged Pn t h e  t h e o r e t i c a l  

s tudy of pfon capture i n n  complex nuc le i ,  22 



The measurements made here  and t h e i r  i n t e r p r e t a t i o n  w i l l  be 

described as follows: In See. 11, theor ies  pe r ta in ing  t o  nuclear  ab- 

s o w t i o n  of Bow energy pions a r e  reviewed; See, III descr ibes  the  experi- 

mental technique and t h e  general  d a t a  accumulation procedure; i n  See. PV, 

a n d y s i s  of t h e  x-ray spec t ra  is  described, t h e  detec tor-ef f ic iency 

measurements are discussed, and t h e  absolute  y i e l d s  a r e  determined; 

See, V' descr ibes  t h e  ca lcu la t ion  of t h e  cascade scheme and t h e  deter-  

mination of t h e  absorptfom rates; and i n  See, VI t h e  experimental re- 

r f z e d  mi8 compared t o  earlier work and t o  Itheoretieal 

predict isms . 



PI, THEORY 

Pion absorption i n  the  nucleus is  h o r n  t o  Be a short-range 

phenomenon occurring predominantly on nucleon p a i r s ,  The short-range 

na tu re  of t h e  i n t e r a c t i o n  enabled west9 t o  descr ibe  t h e  n, L, and Z 

dependence of t h e  nuclear  &sorpt ion rate i n  terns of t h e  overlap of 

t h e  square of t h e  pion wave funct ion with t h e  nuclear  volenme, A short- 

range i n t e r a c t i o n  was  a l s o  i m p l i c i t  i n  t h e  'K-mesie x-ray y i e l d  malysis 

of  Eisenberg and ~essler," who character ized t h e  i n t e r a c t i o n  with a 

s i n g l e  va r iab le ,  t h e  l i f e t i m e  of pions %n nuclear  matter .  

That t h e  absorption should occur on nucleon p a i r s  may be 

understood from BcinematfcaP arguments. Consider first t h e  p s a s i b i B i t y  

of eibsopption by a s i n g l e  f r e e  nucleon of mass N i n i t i a l l y  at rest ,  

IT + + + ElE9, If p i s  t h e  meson rest mass and P i ts  i n i t i a l  mmentm, nr 
then energy conservation gives 

where P is  t h e  f i n a l  mmentm s f  the absorbing nucleon, and we have set 

c = 1. Let t ing  PIT = 0 ,  a good approximation f o r  mesic atoms, we obtain 

3 9 
P s = 525 MeVlc. But momentum conservation requ i res  P = -P = 0, 

7-l' 

hence t h e  process is forbidden. However, i f  t h e  nucleon i s  initially 

bound i n  a nucleus, t h e  r e s i d u a l  nucleus is  a b l e  t o  compensate f o r  t h e  

momentum imbalance, cnnd m s i n g l e  nucleon m y  be  emitted with approximately 

t h e  above mmepntm, The nucleon bound-state wave f a c t i o n  has Fourier 

eomponnenta of r e l a t i v e l y  mail1 annplitudes wi th  t h i s  high momenem ( F e d  



momenturn is t y p i c a l l y  250 MeV/&), thus t h e  wave function overlap of t h e  

i n i t i a l  bound state with t h e  outgoing plane wave i s  expected t o  be 

small ,  and t h e  process w i l l  be  quasi-forbidden, A. d e t a i l e d  c a l c d a t i o n  

by l e  ~ o u r n e u x ~ ~  has shown t h a t  t h e  single-nucleon absorption r a t e  is  

severa l  orders  of mgmitude smaller  than t h e  observed t o t a l  &sorptPon 

r a t e ,  eonf iming  t h a t  the  single-nucleon process is  indeed insfgnff f -  

cant .  

Absorption by two nucleons, hypothesized by ~ e r k i n s , ~ ~  el imi-  

na tes  t h e  requirement f o r  very high momentum c o q o n e n t s  i n  t h e  nucleon 

bound-state wave function.  Brueckner, Serber, and watson2' recognized 

t h a t  such a b s o q t i o n  requ i res  a c e r t a i n  degree of cor re la t ion  between 

nucleon p a i r s  which p e d t s  them t o  be emitted simuPtsmmeously. TCY see  

t h i s ,  consider two~nucleona sharing t h e  a v a i l a b l e  energy of 3.40 MeV and 

ernergjlrng wi th  a r e l a t i v e  molanentm of about 740 MeV/'@, From uncer ta in ty  

p r i n c i p l e  arguments, t h e  absorption process must have involved r e l a t i v e  

d f s t m c e s  of t h e  order  of 8.5 Po 'This is  a small d f s t m c e  compared t o  

t h e  average internucleon spacing i n  cf2 of about 2.5 P and is, i n  f a c t ,  

comparable t o  est imates27 of 0.4 P f o r  t h e  rad ius  of t h e  repuls ive  hard 

core. Extending these  considera t ions  one can argue t h a t  pfon 

capture on t h r e e  o r  more nucleons should be r a r e  because of t h e  small  

probrability of Binding such highly cor re la ted  aggregates i n  t h e  nuclear  

vslvnme, Supporting t h e  model of pion capture by c o r r e l a t e d  p a i r s  are 

t h e  relative success of t h e  phenomenological t h e o r i e s  28929 based on t h i s  

m d e l  and the  observed3' high p m b a b i l i t y  of two-nucleon emission a t  

about P80°, Consequently, absorption on cor re la ted  p a i r s  has  been an 

e x p l i c i t  a s s u p t i o n  of all recent  thes re t i caP  desc r ip t ions  of pion i n t e r -  

a c t f a t s  i n  eompfex nnuePei. BPI of these  theor ies  seek t o  descr ibe  t h e  



absorptive behavior of pions i n  nuclei  i n  terms of e i t he r  the  fm8men.- 

t a l  T-nucleon in te rac t ion  o r  ( the inverse s f )  pion production cross see- 

t ions.  Presumably the  only unknowns ;km such calculations are the nature 

of the  nucleon p a i r  correlations and the s p a t i a l  d i s t r ibu t ion  06 nucleons 

i n  nuclei ,  Thus, i n  pr inciple ,  both approaches are capable s f  pro~r fd ing  

new infomation on these aspects of nuclear s t ructure .  

The f i e l d  theore t ica l  c a ~ c d a t i o n s ~ ~  generally have used the 

nonrelatfv%stfc T-nucleon fn te rac t ian  Hamfltonfan 

where f i s  the pfon-nucleon coupling constant, is the meson mass, M i s  

3 3 
the nucleon mass, a and T a re  the nucleon PauPi spin and isospfn mtrfcee, 

is  the  menturn  operator which a c t s  on only the pion field 4, and a 
7T M 

operates only on nucleon wave functions. The three components of i' 

contracted v i t h  the three components of the  pion f i e l d  $2, and $3 

where 

r e su l t s  i n  a sca la r  i n  iaospin space, insuring charge independence, The 

f i r s t  term on the  r igh t  hand s ide  of Eq. (2) is  obta imd d i r ec t ly  from 

the  r e l a t f v i s t i c  Porn f o r  the  interact ion,  and notably is  the simplest 

form which coupPes the  pse~ndoacinPar pion f i e l d  t o  the  sca la r  nucleon 

wave f a c t i o n s  t o  obtain a parity-consenrlng theory.32 The second tern, 



has been added t o  insure  Gali lean invariance,  i .e.,  t h a t  t h e  i n t e r a c t i o n  

depends only on t h e  r e l a t i v e  momentm between t h e  pion and nucleon, It 

is a l s o  c l e a r  t h a t  the  second t e r m  i s  required i n  order  t o  have absorp- 

t i o n  from Is pionfc s t a t e s .  However, i t  is  no t  mandatory t h a t  t h e  two 

t e r n  have t h e  same coupling constaunt; t h i s  point  has been discussed by 

34   tarn hill 33 and Cheon 

The i n t e r a c t i o n  given by Eq. (2) couples t h e  i n i t i a l  nucleon 

states, genera l ly  described by shell-model. wave functions modified by 

phenomenological p a i r  c o r r e l a t i o n  func&ions, t o  t h e  f i n a l  s t a t e s  of t h e  

emitted p a i r .  The ob jec t  s f  these  ca lcu la t ions  has been t o  p red ic t  t h e  

m g d a r  d i s t r i b u t i o n ,  energy d i s t r i b u t i o n ,  and species  of t h e  emitted 

p a r t i c l e s  a d  by connparissn wi th  experiment ob ta in  i n f o  

t h e  mechmisw of t h e  capeme react ion,  i n i t i a l - s t a t e  p a i r  co r re la t ions ,  

i n f t i a l  nucleon momenta, a d  two-hole e x c i t a t i o n s  i n  t h e  r e s i d u a l  

nucleus. 

Several  authors have a l s o  predic ted  t o t &  absopption r a t e s  

from pionfc 2p s t a t e s  which can be d i r e c t l y  compmped t o  t h e  results of 

t h e  present  work: 

I) C I ~ e o n , ~ ~  using t h e  s h e l l  model t o  descr ibe  t h e  ground-state 

wave funct ion of cX2, a phenomenologicaP p a i r  c o r r e l a t i o n  

function,  and plane-wave states f o r  t h e  emitted nucleons, 

sbtslfnsl 

339s r e s u l t  w a s  r e l a t i v e l y  i n s e n s i t i v e  t o  t h e  value  of t h e  

p a i r  c o m e l a t i o n  p a r m e t e r  which was d e t e w n e d  by s e l e c t i n g  



t h e  bes t  f i t  t o  t h e  angular  d i s t r i b u t i o n  da ta  and the eqer i -  

mental r a t i o  of t h e  number of np p a i r s  t o  nn pairs emitted, 

2) Chung, Danos, and ~ u b e r ~ ~  calcula ted  the  t o t a l  absorption 

r a t e s  fmm t h e  i s  and 2p pionic  states i n  d6. They assmed a 

Woods-Saxon p o t e n t i a l  f o r  t h e  nucleons i n  both t h e  i n i t i a l  and 

f i n a l  s t a t e s ,  %he i n t e r a c t i o n  of t h e  emitted nucleons with the 

res idua l  nucleus was  described by an o p t i c a l  p o t e n t i a l  ( w t t h  

the  imaginary p a r t  set equal t o  ae?ro). Their  fsm f o r  the 

cor re la t ion  function,  assumed t o  be  t h e  same f o r  both the inf- 

t i a l  a d  f i n d  s t a t e s ,  p e m i t t e d  i n t e r p r e t a t i o n  of the conre- 

l a t i o n  v a r i a b l e  d i r e c t l y  i n  terns of t h e  momentm exehmged 

between t h e  two nucleons involved i n  t h e  capture pr091cesso 

They obtained a! nmaximm t o t a l  absorption r a t e  

f o r  a c h a r a c t e r i s t i c  nnnsmentenrm exchange of &out 388 P"XeBJc. 

They noted t h a t  an absorption process a l s o  involving two au- 

cleons but  in which one of t h e  nucleons remains bom,d in the 

res idua l  nucleus may have a rate comparable t o  (41, but de- 

t a i l e d  c d c d a t i o n s  had not  y e t  been c o q l e t e d ,  

3) Elsaesser  and ~ i s e n b e r ~ ~ ~  emphasized t h e  ilnpcrtance o f  an 

accura te  desc r ip t ion  of t h e  wave funetfons f o r  t h e  e d t t e d  nu- 

cleons. The i n i t i a l .  state was assumed adequately described by 

shell-model hmmonie-oseiPlator wave funct ions  modified by a 

eonrela t ion  f a c t o r ,  Noting only a weak dependence on i n i t i a l -  

state c o r r e l a t i o n s  i n  t h e i r  f o m d i s m ,  they penfomed the 



numerical ca lcu la t ions  using pure shell-model wave functions.  

They obtained 

16 
rlp(0 1 = 113.6 x 1015 sec-I = 75 eV (5 1 

The two f i n i t e  values f o r  t h e  eorrePation parameter f o r  which 

they repeated p a r t  of t h e  caPctaPation both r e s u l t e d  i n  in- 

creased t r a n s i t i o n  rates. 

The l a r g e  d i s p a r i t y  between t h e  p red ic t ions  44) and (5) and 

t h e  f a c t  t h a t  (3) is  l a r g e r  t h a  ( 4 )  while the  converse should be t r u e  

I s  s m t o m t i c  of t h e  complexity of these  caPcPrfations. For example, i t  

is  s t i l l  uncer ta in  whether t h e  high-momentm Four ier  components required 

i n  t h e  nucleon wave funct ions  a r e  provided p r e d o d n a t l y  by i n i t i a l - s t a t e  

c o r r e l a t i o n s  o r  by f i n a l - s t a t e  in te rac t ions .  In te rac t ions  of t h e  

emitted nucleons wi th  t h e  r e s i d u a l  nucleus have genera l ly  been ignored 

but  Rave recen t ly  been shown t o  be q u i t e  s i g n i f f c a t ,  31936939 Also, t h e  

e f f e c t s  of s-wave charge-exchange rescattering4'  of t h e  inc ident  pion 

m d  t h e  inf1uence of low-lying exc i t ed  s t a t e s  of  t h e  r e s i d u a l  nucleus 
3 6 

a r e  seldom considered. It is f o r  these  reasons t h a t  it is d i f f i c d t  t o  

draw d e f i n i t e  concPusions from t h e  f i e l d - t h e o r e t i c a l  e d c d a t i o n s  a t  t h i s  

t i m e ,  

An a l t e r n a t e  approach t o  an mders tanding of t h e  IT-nucleus 

i n t e ~ a c t f o n  is t h e  semi-phenomenoPogfcaP desc r ip t ion  of  !&ell and 

 riceo on." The energy l e v e l s  of  t h e  n-mesic atom are assumed given by 

the efgenvalues of the  KBein-Gordon equation (45 = c = 1) 



where V is  t h e  Coulomb p o t e n t i a l  correc ted  f o r  f i n i t e  nuclear  s i z e  and 
c 

vacuum po la r i za t ion ;  is  t h e  reduced pfon mass, $ t h e  boeurd-state pfon 

wave function,  and V t h e  s t rong- in teract ion p o t e n t i a l .  The phenesmenol- 

s g f c a l  approach i s  t o  write t h e  p o t e n t i a l  V i n  such a way tha t  it. i s  

completely spec i f i ed  by empirical  d a t a  on elementary K-nucleon scatter- 

ing  and pion production c ross  sec t ions .  To accompPish t h i s  Erfcssn and 

~ r i c s o n ~ l  chose t o  descr ibe  t h e  low energy s c a t t e r i n g  of pions on s ingle  

nucleons f and cor re la ted  nucleon p a i r s  i , j  by t h e  s c a t t e r i n g  a ~ l % e u d e s ,  

where w e  have re ta ined  only t h e  mst important t e r n  i n  both f, 0 1  
I 

and f @I(;). The parameters bO, bl, co, cl are r e a l  constants  which 
i 3  

are l i n e a r  combinations of t h e  elementary T-nucleon s-wave scatterirng 

lengths  and p-wave s c a t t e r i n g  volumes. Simi lar ly  B and C are complex 
0 0 

constants  l i n e a r l y  r e l a t e d  t o  various amplitudes s f  t h e  (n2N) system, 

+ 
The &-functions i n  r approximate the  s h o r t  range of t h e  i n t e r a c t i o n ,  

-+ -P 
and 6 ( r  -r ) insures  t h a t  pion absorption occurs on correPated pairs ,  

i 3 
-+ 4 -b 

Furthermore t is t h e  i sosp in  of t h e  pion, k g  and k t h e  pion f i n a l  and 

-9 
i n i t i a l  momenta, while ri is  t h e  nucleon isospin .  Using Hq. (la) t o  

descr ibe  e l a s t i c  s c a t t e r i n g  'rr + N -+ 'rr + N and Eq. (7b) t o  descr ibe  

pion production p + p + n+ + D one obta ins  experimentally deternined 

values f o r  t h e  constant  parameters i n  t h e  s c a t t e r i n g  amplitudes, 

Next, usSng a mdt$ple-scat ter ing f o m f i s m ,  t h e  E P ~ C S O ~ ~  ob- 

3 
t a i n  an expression POP the  pion wave funct ion $(r) which jigt a sm aE the 



inc ident  wave p lus  contr ibut ions  from the  s c a t t e r e d  waves from a l l  o the r  

nucleons i n  t h e  nucleus. The l a t t e r  contr ibut ion is i n  t h e  form of an 

I n t e g r a l  i n  which t h e  integrand contains t h e  s c a t t e r i n g  amplitudes Eqs. 

(7a,b) and a  ree en's function which s a t i s f i e s  t h e  Klein-Gordon equation 

with a &-function source term. By applying the  KPein-Gordon opera tor  t o  
-P 

$(r) they ob ta in  an equation i n  which they can i d e n t i f y  a p o t e n t i a l  V 

such t h a t  

wi th  42 

Were p (1 + pIM) and p2 = (1 + )112M) are kinematical  f a c t o r s ;  pn(;), 4 
+ -% 

P ( r )  , and p (r) are t h e  average neutron, proton, and nucleon d e n s i t i e s ,  
P 

~ e s g e c t i v e 1 y .  The v a r i a b l e  6 is  a c o r r e l a t i o n  p a r m e t e r  which t h e  

f o m d i s m  ind ica tes  should be  un i ty  i n  t h e  Bimft of zero range f o r  the  

n u e l e m  p a i r  co r re la t ions .  

Equation (6) with t h e  s t rong- in teract ion p o t e n t i a l  V given by 

Eq. (8) has been solved numerically by severa l  authors t o  obta in  t h e  

s h i f t s  and widths of t h e  lower energy l e v e l s  i n  n-mesic atoms. In  these  

s t u d i e s  the  phenomenological constants  i n  Eq. (8) were t r e a t e d  as gara- 

m e t e r s  t o  be va r ied  t o  ob ta in  t h e  bes t  agreement with ava i l ab le  mesie 



x-ray data. These "best f i t "  values f o r  t h e  parameeers were then corn- 

pared t o  those based on experimental d a t a  f o r  T-nucleon scattering 

lengths  and pion production cross  sec t ions .  Before a v a l f d  esmparfson 

is  poss ib le  t h e  r e d  parameters obtained from t h e  elementary inter-= 

ac t ions  muse be adjus ted  f o r  t h e  s p e c i f i c a l l y  nuclear  e f f e c t s  of f i n i t e  

c o r r e l a t i o n  length  and F e d  motion as wel l  as t h e  d ispers ive  effects 

s f  pion absorption. The absorpt ive  parameters must be adjus ted  to in- 

clude absorption on nucleon p a i r s  $n a re la t ive - s ing le t  s t a t e ,  These 

correct ions  are discussed i n  d e t a i l  i n  Ref. 21 and 41. 

The energy l e v e l  s h i f t s  i n  t h e  r-mesic atoms a r e  f o m d  to be 

w e l l  described by t h i s  model, and t h e  parameters of t h e  p o t e n t i a l  are 

i n  very good agreement wfth those based on elementary v-nucleon elastie: 

s e a t t e r i n g  data. 

The p ion ic  ls-level widths a r e  not  w e l l  d e s ~ r i b e d ~ " ~ ~  i n  t h a t  

t h e  predfcted dependence on nuclear  charge is  9nm disagreement wfth ewerf- 

ment f o r  elements w i m  Z > 6 .  Also, t h e  experimental width in i s  

l a r g e r  than t h a t  of 016$ whereas t h e  t h e o r e t i c a l  i sosp in  dependence 

should produce t h e  opposite  e f f e c t .  Furthermore, the  "best f i t B g  value 

(including correc t ions)  f o r  imBO, t h e  parameter determined almost ex- 

c lus ive ly  by these  widths, is l a r g e r  by a f a c t o r  of 2 , s  t h a t  that ob- 

t a ined  from pion production c ross  sec t ion  data.  On the  o t h e r  had, t h i s  

model is somewhat more s u c c e s s f d  i n  descr ib ing t h e  2p-Pew1 wfdthe i n  

pionic a t o m ;  t h i s  w i l l  be discussed i n  d e t a i l  i n  Sec. VI, 

It is t o  be expected perhaps t h a t  t h e  present  model m y  not 

adequately descr ibe  t h e  abso.~pt ion of pions Bm complex n u c l e i ,  "B"e im-  

p l i c i t  assumption t h a t  t h e  i n i t i a l  and f i n a l - s t a t e  c o n e l a t i o n s  between 



the absorbing nucleons i n  a nucleus a r e  the same a s  those between the 

nucleons i n  the elementary pion production reaction is an oversfmpfiff- 

eation. Furthermore, the  possible influence of f ina l - s ta te  interact ions  

between the emitted nucleons and the residual nucleus has not been in- 

eluded, nor have e f f ec t s  of nuclear excitations.  Both of these phenom- 

ena were found t o  be s ign i f ican t  i n  the  f i e ld - theo re t i cd  calculations 

discussed earlier. Also, cln in te res t ing  feature  of the  numerical anafy- 

sis is tha t  the "best f i t "  value f o r  ImBo is most strongly influenced 

by the measured widths i n  elements with Z < 7. This r e su l t s  Prom the 

f a c t  thae these measurements represent the majority of the  most precise- 

l y  detemfned experimental data. The application of an opt ica l  goten- 

t i a f  t o  these low-Z elements with t he  ant ic ipat ion t h a t  the  parameters 

thus d e t e d n e d  apply a t  higher Z may be naive. H t  is  possible thae 

the -parent ' 'leveling of fqq  s f  the  1s-level widths f o r  Z > 9 could be 

convexsely jlnte~pxeted a s  an enhcnncement of the  absorption rate i n  

1 ~ - Z  e lmea te .  Thfs poss fb i l i ty  w i l l  be fur ther  discussed i n  Sec, V I .  



The mesic x rays  were o b s e m d  i n  two experiments perfomed a t  

t h e  N.A.S.A. Space RadPatfon Ef fec t s  Laboratory 688 MeV spePRrocycPotron, 

Because t h e  two experiments employed near ly  i d e n t i c a l  ' & e m ,  easmter con- 

f igura t ions ,  and e lec t ron ics ,  only t h e  first w i l l  be  deserfbed in detai l .  

and t h e  re levant  d i f fe rences  noted, 

A low duty-factor beam of negatsve pions was obtained by proton 

bombardment of  an i n t e r n a l ,  v i b r a t i n g  beryll ium t a r g e t .  Pions emerging 

from t h e  t h i n  vacuum window of t h e  cyclotron w e r e  focussed by a. pafr of 

quadrotpole mmets and trznrnsported i n  a Re atmosphere t o  a bendfng magnet 

ou t s ide  t h e  cyclotron vau l t .  The 190 ~ e V % c  beam was def lec ted  35' by the 

magnet and t r ave led  2.4m i n  a i r  through a 0.2m x 0,2m Bead-Pined aperture 

i n  an e x t e r i o r  sh ie ld ing  wa l l  before a r r i v i n g  a t  t h e  corntern: telescope, 

A drawing of t h e  sc in t iB la t ion-comter  a r r a y  and target -detec tor  

geometry is  shorn i n  Fig, 1, The degrader upstream of  e o m t e r  1 w a s  used 

only during t h e  m o n i e  x-ray runs. Electron r e j e e t f o n  was acesampEisRed 
v V 

by 6 ,  a Cerenkov counter  f i l l e d  with FC-75 viewed by two RCA 857% photo- 

m u l t i p l i e r s  whose outputs  were summed i n  a l o g i c a l  OR m d e ,  Counter 3 

was employed t o  suppress t h e  acc iden ta l s  which would o t h e m i s e  eiceuac when 

n e u t r a l s  from pion i n t e r a c t i o n s  i n  t h e  degrader are detec ted  'by counter 4 ,  

Counter 7 served as a m n i t o r  o f  p a r t i c l e s  which might be tscaltered through 

l a r g e  angles a f t e r  en te r ing  t h e  t a r g e t ,  and counter  6 was used t o  m n i t o r  

t h e  efficiency of t h e  ve to  counters  and 5 as given. by - 



This quan t i ty  was genera l ly  i n  t h e  range 0.95-1.00 depending on beant 

composition and whether t h e  t a r g e t  was i n  o r  out  of t h e  beam. The e f f i -  

ciency and i ts  use i n  determfning t h e  absolute  number of meson s tops  
C5 

w i l l  be discussed i n  more d e t a i l  i n  See. 1V.C. A l l  counters  were square 

with t h e  exception of t h e  target-defining counter  4 which was a 3" (diam.) 

m 8.863°P d i sk  of s c i n t i l l a n t  mounted i n  a 4'' x 4" x l /8"  Euci te  support.  

In the  second experimental run counter 7 was e l i d n a t e d ,  counter 5 was 

inc l ined  more toward t h e  b e m  ax i s ,  and a 5" x 5'' x l /$"  veto  counter 

w a s  placed agains t  t h e  downstream Pace of the  t a r g e t ,  I n  both experi- 

ments t h e  target -detec tor  a x i s  was p e q e n d i c d a r  t o  the  t a r g e t  plane and 

45' t o  t h e  beam ax i s .  The t a r g e t s  were held i n  a f ixed p o s i t i o n  re la -  

t i v e  t o  t h e  de tec to r s  by a r i g i d  % r a m  mounted on t h e  de tec to r  c ryos ta t s ,  

Counter 4 could be t r a n s l a t e d  a s h o r t  d i s t ance  along t h e  Beam a x i s  t o  

da te  t a r g e t s  of d i f f e r e n t  thickness and remain i n  contact  with 

t h e  a~pstrem face  of  t h e  t a r g e t ,  

A block diagram of t h e  e l e c t r o n i c s  is shown i n  Fig,  2.  Many 

of t h e  components were used only as p e r f o m n e e  monitors and were not 

saed i n  e s t a b l i s h i n g  t h e  prompt t i m e  s igna tu re  f o r  a stopping p a r t i c l e  - - - 
which was  P 2 8 3 4 5 7. Figure 3 shows a range curve obtained i n  a 

2 
3 - 2  g/cm carbon t a r g e t  with t h i s  s ignature ,  Pn addi t ion  t o  t h e  prompt 

t i m e  s igna tu re  a pulse-height r e s t r i c t i o n  w a s  placed on t h e  amplitude 

of t h e  pulse  in counter 4 t o  r e j e c t  events which occur when t h e  pion 

s tops  i n  4 r a t h e r  than i n  t h e  t a r g e t .  This w a s  found t o  be f e a s i b l e  

because t h e  s i g n a l  generated i n  t h e  scint iBPant by o stopped pion ("starPP 

event) was usual ly  detec tably  g r e a t e r  t h a  t h a t  from a slow pion t r ans -  

vers ing t h e  e n t i r e  t h i c h e s s  of t h e  s e i n t i l l a n t .  The pulse  height  Prom 



the 14th - dynode of the  56AVP photomultiplier on counter 4 was analysed 

to  determine the  threshold on discriminator D4', This technique was 

approximatePy 60% e f f ec t i ve  f o r  discriminating against  pion s tops  In  

counter 4 and was shown t o  produce a negl igible  "dead-layergg on t h e  up- 

stream surface of t he  ta rge t .  The complete stops signature was then 

The consequent reduction of t h e  mesic x-ray background from carbon i n  

6 the  L i  spectrum simpli f ied t he  analysis  appreciably. The spectra of 

t he  o ther  t a rge t s  were r e l a t i ve ly  unaffected, and the  technique was 

not used i n  t he  second experiment which concentrated on elements 

6 - < 2: 2 22. 

A l l  t a rge t s  except (lIZ)0l6 consisted of one o r  more t h i n  plates  

which f a c i l i t a t e d  measurement of x-ray absorption coef f ic ien ts  to be used 

i n  t he  self-absorption corrections,  When the  e f f e c t s  of impurit ies m d  

ta rge t  coverings were included, d l  measured absorption coef f ic ien ts  were 

consistent  with those in published A s 

proper t ies  a d  some typ ica l  r a t e s  using the  complete signature f o r  a 

stopping p a r t i c l e  a r e  given i n  Table 9, 

The sol id-s ta te  detectors  used t o  de tec t  the  x rays are l i s t e d  

along with t h e i r  relevant physical  and e lec t ron ic  cbarac te r i s t fes  i n  

Table P I .  APP detectors  were operated a t  l i qu id  nitrogen temperatures 

and employed cooled f ie ld-effect  t r ans i s to r s  a s  the f i r s t  s tage sf am- 

p l i f i c a t i on .  '' Subsequent amplification and pulse shaping were performed 

with Tennefec TC20l and TC208 amplifiers.  The planar &(Lf) de tec to r  

system e q l o y e d  a pole-zero modification t o  the main BurnpPifier, The 

coaxfal @e(Ei) detector  spectrometer included aun Brtec 438 base-line 



r e s t o r e r ,  The shaped pulses  were analysed and s to red  by a Victoreen 

SGIPP 1600 channel pulse-height analyzer (PHA) which was gated whenever 

a s i g n a l  i n  t h e  x-ray de tec to r  coincided with a meson-stop s ignature .  

To e s t a b l i s h  t h i s  coincidence a zero-crossing technique was employed 

t o  obta in  a timing pulse from t h e  de tec to r  s igna l .  The block diagram 

an Fig, 2 shows t h e  Canberra 1410 double-delay-line ampl i f ier  (DDKA) 

which produces a zero-crossing s i g n a l  from an unshaped de tec to r  pulse  

obtained from an e l e c t r i c a l l y  i s o l a t e d  output of the  main ampl i f ier .  

The energy window of t h e  Brtec 428 single-channel timing analyser  (SCTA) 

accepted s i g n a l s  only i n  t h e  energy range of i n t e r e s t  i n  order t o  mini- 

mize count-rate e f f e c t s .  

A p l o t  of t h e  number of these  x-ray timing s i g n a l s  versus the  

t i m e  a t  which they occur r e l a t i v e  t o  a meson-stop s igna tu re  e x h i b i t s  a 

prominent peak on a f a a t  background, This "timing peakqq r e s u l t i n g  from 

the correPation Between meson s t o p  and x-ray emission was continuously 

monitored on a second pulse-height analyser  which displayed the  output  

of a time-to-amplitude converter  (TAC) (see Fig. 21,  The sum of t h e  

widths of t h e  output  pulses  of d iscr iminators  D B l  (x ray) and D 1 0  

(meson s top)  determined the  timing window within  which an x-ray s i g n a l  

was s a i d  t o  coincide with a meson s t o p o  This w3ndow w a s  328 nsec  wide 

BIDE a l l  de tec to r s  and was  centered on t h e  timing peak. Figure 4 shows 

a t y p i c a l  timing spectrum with  t h e  wfndow carntafnirng t h e  sggood" events 

s to red  i n  a separa te  sec t ion  of  t h e  a d y s e r  t o  f a c i l i t a t e  monitoring 

the p e r f o m n c e .  The timing windlow included p a r t  of  t h e  " f l a t Y Y  back- 

ground i n  t h e  prompt eiming t o  preclude l o s s  o f  very low energy pulses  

due t o  poss ib le  energy-dependent t i m e  s h i f t s o  



The data acquis i t ion procedures were essen t ia l ly  the same for 

a l l  targets .  F i r s t ,  the degrader thickness was adjusted t o  obtain a 

maximum r a t e  of pion stops. Standard sources49 which emitted y rays or 

x rays whose energies covered the  region of i n t e r e s t  were attached t o  

the center of t h e  downstream face (detector s ide)  of the  t a rge t ,  and 

data from these sources were acemulatedl f o r  a f ixed P'lfveqq tfme wi th  

the beam on, During these absolute eff ic iency measurements the gate 

f o r  t he  x-ray PHA was generated by the  x-ray timing s igna l  alone, the  

meson-stop signature reqwtrement at  C9 (Fig. 2) having been removed* 

Analysis of t h e  detector  eff ic iency data w i l l  be discussed jlra Set, IV,B, 

Following the  ca l ib ra t ions ,  the  sources were removed, the  meson-stag 

signature requirement was re ins ta ted ,  and mesic x-ray data  were accmu- 

la ted.  After the  pionic da ta  were recorded, suffgcient  degrader mate- 

r i a l  was added t o  maximize the  rate of muon s tops ,  and the procedure was 

repeated. 

A t  the  conclusion of the  mubnPc x-ray aul the  eaogee was re- 

moved, and target-out beam r a t e s  were es tabl ished f o r  both t he  muon a d  

pion beams. The use of thesgle r a t e s  i n  d e t e d n i n g  the  absa3luee n-mber 

of stopped mesons w i l l  be discussed i n  See. 9V.C. 



IV. ABSOLUTE YIELD MEBSURWNTS 

A. Analysis of Spectra 

Peaks in the mesic x-ray spectra were analyzed primarily to 

determine the number of x rays corresponding to the transitions of 

interest and the uncertainties to be assigned to those numbers. The 

energies and, where applicable, the strong-interaction broadening of 

the transitions were determined and compared to the more precise values 

which have appeared in the literature. l8 * 46 50'51 The agreement was 

generally good, and discrepancies were always within the estimated 

uncertainties in the present measurements. Two specific examples will 

be discussed in See. HV.D, 

The major contribution to the uncertainty in the number of 

counts in a given x-ray peak arose from the uncertainty in the background. 

The use of thin, small targets, while reducing the importance of possible 

systematic errors, limited the statistics which could be accmulated in 

a given amount of running time. Although the relatively low statistics 

oceasionaPPy aggravated the problem of determining the characteristics 

of the background, in most instances improved statistics would not have 

significantly reduced the uncertainty sf the final result. In this 

sense the analysis generally was not limited by statistics. Another 

complication was the asymmetry of the peaks obtained with the coaxial 

detector. Because the asymmetry was observed to be essentially inde- 

pendent of the amplification system, employing consistent criteria in 



analyzing c a l i b r a t i o n  spec t ra  and mesic x-ray spec t ra  assured t h a t  

systematic u n c e r t a i n t i e s  would l a rge ly  cancel.  A s  a consistency check, 

the  L-series i n  Mg and t h e  K-series i n  @ were inves t igated  using both 

Ge(Li) de tec to r s ,  and t h e  f i n a l  r e s u l t s  were found t o  be i n  good agree- 

ment. The most s i g n i f i c a n t  systematic u n c e r t a i n t i e s  i n  the  background 

were due t o  t h e  presence of contaminant peaks, genera l ly  defined a s  any 

peaks not  belonging t o  t h e  mesic x-ray s e r i e s  of primary i r a te resk  In 

t h e  present  experiment contaminant peaks could have a r i s e n  from the 

following phenomena: 

1 )  t h e  presence of muons i n  t h e  pion beam. With the  degrader t h i ck -  

ness chosen t o  maximize the  r a t e  of stopping pfons i n  the ta rge t  

t h e  r a t i o  of muon t o  pion s tops  was of order P:l0* However, 

f o r  t h e  K-serfes t h e  muonic x-ray y i e l d  is always significantly 

l a r g e r  than t h e  pionfc x-ray y i e l d ,  and t h e  muonic l i nes  

a c t u a l l y  dominate t h e  spec t ra  f o r  Z 4. I n  t h e  present  experi- 

ment ehe muonic x-ray peaks were t h e  major contaminants in the  

p ionic  spec t ra  of Be, @, and 8 a s  can be seen i n  Fig ,  5. 

mesons stopping i n  any material o the r  than t h e  t a r g e t ,  Such 

events a r e  inconsequential  unless  they coincide with a meson- 

s top  s ignature .  Hence, most events of t h i s  type occurred when 

t h e  meson stopped i n  any non-target ma te r i a l  between (and 

including) counter 4 add , the s c i n t i l l a n t  of counter 5. Because 

carbon was t h e  most abundant element i n  these  mteria9l.ei, its 

x rays  appeared i n  most spec t ra  and i n  p a r t i c u l a r  complicated 

t h e  i n t e r p r e t a t i o n  of some of t h e  E i ,  6, and Mg data .  Pn some 

ins tances  small  contaminant peaks due t o  mesons which had been 

sca t t e red  i n t o  t h e  de tec to r  cryoseat  w e r e  a l s o  observed. 



3) the decay of nuclear excited states following nuclear pion 

capture in the target. The time interval between a pion stop 

and the appearance of a de-excitation nuclear y ray is 

usually very short compared to the timing-window width of 

320 nsec. Hence they cannot be discriminated against by the 

electronics and may appear in the mesic x-ray spectra. In 

Fig. 5(c) four such contaminant peaks in the pionic oxygen 

spectrum are indicated. 

Other phenomena which might have produced background peaks 

were investigated and found to be of little or no significance. These 

included flouresence effects which might produce atomic x rays in the 

eryostat or shielding materials, pion contamination in the muon beam, 

and nuclear muon capture. 

In an attempt to locate and identify all sfgnfficant contami- 

nant peaks and thus reduce the uncertainties in the Backg~ound~the spectra 

were subjected to three separate examinations: 

a) all spectra were "scannedDs by computer-fitting each identi- 

fiable peak in a spectrum to a Gaussian function plus a Pinear 

background, the number of data channels included in the fit 

being as large as practicable. Groups of adjacent data 

channels were then summed to enhance peaks of smaller ampli- 

tude which were otherwise obscured, and the peaks were fitted 

again. In this way all peaks were Centatively identified and 

catalogued. 

b) portions of spectra containing peaks separated by less than 

approximately 41' (I' is the full width at half m x i m m  sf the 



broadest peak i n  t h e  spectrum) were decomposed by obtaining 

a f i t  t o  a two-Gaussian funct ion  p lus  l i n e a r  background. I f  

t he  contaminant i n  a pionfc x-ray spectrum consisted of a 

muonic x-ray series i t  was usual ly  poss ib le  t o  sub t rac t  rhe 

e n t i r e  series using a c l ean  muonic x-ray peak in the pfonfe 

spectrum a s  a reference;  t h i s  reference  peak was compared t o  

the  corresponding peak i n  a muonic spectrum taken wi th  the 

pure muon beam t o  ob ta in  a s c a l e  f a c t o r ;  t h e  sca led  muonic 

x-ray spectrum was then subt rac ted  from t h e  p ion ic  spectru~m, 

Af ter  t h e  separa ted  peaks were examined f o r  anomalies which 

t he  adjacent  peaks might have concealed, those exhibitl.ng 

n a t u r a l  broadening were f i t t e d  t o  Voigt p ro f i l e s52  and a l l  

o t h e r s  were f i t t e d  t o  Gaussians. I n  a l l  cases  the  interval of 

t h e  f i t  was approximately 4l" and centered on t h e  peak, 

c )  p l o t s  of spec t ra  (usual ly  with groups of adjacent  d a t a  channel8 

summed) were examined and t h e  sub t rac t ion  of contaminant peaks 

and Binear background was performed by eye. 

For most x-ray t r a n s i t i o n s  of i n t e r e s t  both (b) and (c) were employed to 

ob ta in  t h e  number of counts  (detected x rays)  in t h e  peak and as a r u l e  

gave c o n s i s t e n t  r e s u l t s .  This  genera l  agreement was f e l t  t o  j u s t i f y  

using t h e  r e s u l t s  of (c)  a lone  i n  those Pew ins tances  when very Isw 

s t a t i s t i c s  made app l i ca t ion  of (a) and 4b) impractica1. menever (b)  

and (c) produced d i f f e r e n t  r e s u l t s ,  t h e  discrepancy never exceeded 2.0 

standard dev ia t ions  and was usua l ly  less than 1.5. I n  a l l  such cases 

the  s p e c t r a  were re-examined, poss ib le  causes of t h e  discrepancy 

es tab l i shed ,  and a f i n a l  number s e l e c t e d  wi th  an assigned uncer ta in ty  

l a r g e r  than e i t h e r  of t h e  o r i g i n a l  u n c e r t a i n t i e s .  



The analysis of the carbon data required special techniques 

because of the relative abundance of carbon in non-target materials 

such as scintillants, counter wrappings, and degraders. The observation 

of carbon L-series x rays in the Li and Be spectra and their absence in 

the Mg spectra strongly suggested that all carbon contamination origi- 

nated upstream of the targeteS3 Subsequent detailed analyses of the 

intensities of the carbon x-ray peaks which appeared in many of the 

spectra were consistent with the hypothesis that all of these x rays 

originated in the scintillant of counter 4. The contribution from 

counter 4 either could be subtracted from the carbon x-ray spectra or 

it could be included and the target volume and number of meson stops 

adjusted to include the counter. The latter technique was the one 

employed and resulted in approximately a 10% correction to the total 

niumber sf stops, 

B. Detector Efficiencies 

The absolute net efficiencies of the three detectors were 

determined over energy ranges which spanned the mesic x-ray spectra of 

interest. The absolute net efficiency is defined here as 

no. counts in full-energy peak with source at distance D 
no. y rays emitted 9 

where the source was on the symmetry axis of the detector. The distance 

D is given in Table 11. The number of y rays was determined from the 

calibration data provided by the supplier54 and corrected for absorption 

in the source holders. Hereafter the use of the word efficience shall 

mean the absolute net efficiency as defined above. 



The efficiencies at energies for which calibrated sources 

were available were plotted versus energy on logarithmic graphs and 

the points connected by a smooth curve, The final results are shorn 

in Fig. 6. Knowledge of the shapes of the Ge(Lf) detectorsV efficiency 

133 curves was improved by employing an uncalibrated Ba source. The 

~a~~~ spectrum contains several y rays whose relative intensities are 

well known55 and whose energies are within the range spanned by the 

@e(Li) detectors. The relative efficiency data obtained with the Ba 133 

source were normalized to the absolute efficiency data by equating the 

efficiency at 279 keV ( ~ a l ~ ~ )  to the absolute efficiency at 276 keV 

49 ( H ~ ~ ~ ~  calibrated ) . 
A counterpart to the ~a~~~ source which would have aided in 

determining the shape of the Si(Ei) efficiency curve was not available, 

The alternative technique used was to determine a theoretical efficiency 

curve from a knowledge of the physical components of the system and t h e  

appropriate photon absorption coefficients. The theoretical relative 

efficiency curve was superimposed on the experimental data p o i n t s  

obtained from calibrated sources by no~malPzing at 14.4 &eve Two of 

the experimental points are inconsistent with the predicted curve shape 

and require further comment. They are the l8-keV and 2l-keV E and E 
B Y 

x rays of ~p~~~ produced by the alpha decay of ~m~~~~ The absolute 

5 6 intensities of these x rays have been measured elsewhere using an argon 

proportional chamber spectrometer which resolved only the most prominent 

peaks. A more recent investigations7 in which these intensities sere 

used to calibrate a Si(Ei) detector spectrometer indicated that the 

intensity sf the 18-keV series may be greater than that given in Ref, 56. 



$a the present experiment the spectrometer resolution was better than 

those in Ref. 56 and Ref. 57, perhaps permitting more accurate determi- 

nation of the background, which may account for the discrepancy at 

2 1  keV as well as at 18 keV. The possibility of a systematic uncertainty 

in the background combined with the fact that no alteration in the 

parameters for the theoretical shape could provide agreement at these 

two points without destroying the agreement at a11 other points was the 

basis for rejecting the quoted N~~~~ x-ray data at 18 keV and 21 keY. 

Having determined the efficiency of the detectors to a point 

source located on the symmetry axis sf the detectors, we measured the 

efficiency off-axis relative to the efficiency ow-axis to find the 

uniformity 

lJ(r9$,Dl = Q (r94 ,Dl/Q (r=o sD) 

where Q(r,$,D) is the absolute efficiency of the system to a source at 

the location specified, and the origin of the cy1indrical co-ordinate 

system is taken at the center of the front surface of the detector. 

These uniformity measurements were made over an area somewhat larger 

than the size of the target and repeated at several different energies. 

2 2 2  The average of UD / (r +D over the target area was approximately 0.95 

for both the Si(Li) detector and planar Ge(Li) detector and 0.90 for 

the coaxial Ge(Li) detector. 

Knowledge of U made off-axis efficiency measurements during 

the mesic x-ray runs unnecessary, and prior determination of the shapes 

of the efficiency curves permitted the use of only a few sources to 

establish the absolute efficiency over a wide range of energies. Thus, 



the frequent calibrations referred to in Sec. TI1 did not require an 

inordinate amount of time. 

The detector efficiencies -- in situ were obtained from the beam- 

on efficiency measurements described in Sec. PIP. These measurements 

were compared to those taken with the beam off as well as to measure- 

ments taken earlier in the laboratory, The data taken with t he  beam 

off were in very good agreement with the earlier measurements. Analysis 

of the beam-on results indicated beam-dependent deadtimes whgch, ehouph 

different for each detector, were essentially independent of both 

energy and target material.58 The deadtime, attributed to the effect 

of overload pulses on the amplifiers and not to conventional count-rate 

effects, reduced the efficiency of the planar @e(Ei) detector by 

approximately 22% and PO% during the gionfc and muonic x-ray measurements 

respectively. The deadtfme in the other two detectors were approximately 

half of that in the planar Ge(Ei.1 detector. 

To determine the efficiency for any given energy generally 

required interpolation between two ealibratPon points which bracketed 

the energy region of interest. Occasionally extrapolation was necessary 

and resulted in the assignment of somewhat larger uncertainties to the 

absolute efficiency. Both techniques utilized the curve shapes shorn 

in Fig. 6. The one exception was the determination of the S%(Lf$ 

9 
detector efPPciency at 6.8 keV (muonic 3d-2p line in Be ) ,  B e l o w  

approximately 9 . 5  keV the Si(Ei) detector deadtfme was no longer 

independent of energy but increased rapidly with decreasing energy, 

This effect was not recognized until after the experiment had been 

completed, and the milable data did not permit a thorough investigation 



of t h e  phenomenon, Nonetheless, i t  was poss ib le  t o  determine the  

e f f e c t  on the  de tec to r  e f f i c i ency  during t h e  c a l i b r a t i o n  run by eompar- 

ing  t h e  low energy (Compton) backgromd i n  spec t ra  obtained with the  

beam on and with it o f f .  The a t t enua t ion  a t  these  low energies which 

was q u i t e  apparent Bn t h e  c a l i b r a t i o n  spectrum appeared t o  be l e s s  severe 

i n  t h e  mesic x-ray ~ p e ~ t r m .  The d i f f i c u l t y  i n  speci fy ing the  e f f i c iency  

i n  t h i s  low eneegy region i s  the  p r i n c i p a l  cause f o r  t h e  l a r g e  uncer- 

t a i n t y  assigned t o  t h e  y ie ld  f o r  t h e  t: l i n e  i n  Be. 

@, Detemfnatfon of t h e  Number of Stopping Mesons 

The t o t a l  number of  pions and muons stopping i n  t h e  t a r g e t  

during an x-ray run was taken t o  be t h e  sca led  number of  s top  s ignatures  

correc ted  f o r  veto-counter e f f i c i ency ,  ou t sea t t e r ing ,  and events s a t i s -  

F y h g  (PO) but  occurring i n  mate r i a l s  o the r  than t h e  t a r g e t .  This l a s t  

co r rec t ion  was obtained by measuring t h e  stopping r a t e  (with respect  t o  

11234 events)  with t h e  t a r g e t  removed and mult iplying t h i s  r a t e  by t h e  

nwiber of 1234 events during the x-ray run, This product,  correc ted  

f o r  the  e f f i c iency  of t h e  veto  counters  and ou t sea t t e r ing ,  was t h e  t o t a l  

n m b e r  of s tops  occurring i n  non-target mater ia ls .  H q B i c i t  i n  t h i s  

corngutation was t h e  assumption t h a t  t h e  stopping rates i n  these  

materials d id  n o t  change when t h e  t a r g e t  was removed. This a s s u q t i o n  

was j u s t i f i e d  f o r  t h e  following reason. Because t h e  stopping r a t e s  i n  

any given lnaterial are a f fec ted  only by t h e  degrader upstream, c l e a r l y  



all rates in materials upstream of the target are independent of the 

target. For materials downstream of the target the target-in and 

target-out stopping rates will be very nearly the same if the distribu- 

tion of stopping mesons is symmetrical about its maximum and is centered 

in a target which is relatively thin. These conditions were assured 

through the use of thin targets (see Table I.) and by adjusting the 

degrader thickness for each target to obtain a maximum stopping rate, 

The symmetry was confirmed by inspection of the range curve (Fig. 31, 

Typically less than 15% of the stop signatures corresponded to events 

occurring in non-target materfals. 

The veto-counter efficiency (9) as determined using counter 6 

was 'by definition a relative number which depended on the csmpssftiow sf 

the beam passing through veto counter 5. Because 5 was less sensitive 
v 

to electrons than to muons or pions and the Cerenkov counter was not 

perfectly efficient, the higher the proportion sf electrons in the beam 

the Power the efficiency. Thus we observed qv z 1.00 for target-out 
6 5 

runs in the pion beam and z 8,95 for target-in runs in the muon beam. C5 

The exact values for each run were used to correct the correspondf9?ig 

numbers of total stops. 

Counter 7 intercepted some of the particles which emerged 

from the target at large angles and missed counter 5. Because it was 

anticipated that such outscattering would be only a small correction 

to the stopping.rates, no effort was made to examine it in detail. We 

assumed that the outscattering would Be cylindrically s ~ e t r i c  about 

the beam ax$s and that we could ignore scattering through angles greater 

than approximtely 90' in the laboratory frame of reference. The number 



of f a l s e  s t o p  s i g n a t u r e s  which counter  7  prevented was taken t o  be  t h e  

nlmber of counts  r e g i s t e r e d  i n  C4 minus those  r e g i s t e r e d  i n  C5 ( see  

F ig .  2 ) .  Had counter  7 completely e n c i r c l e d  t h e  beam a t  t h e  same 

d i s t a n c e  from t h e  beam and w i t h  t h e  same e x t e n t  a long  t h e  beam a x i s ,  

it would Rave covered a  s o l i d  ang le  6 .2  t i m e s  l a r g e r .  The pre l iminary  

o u t s c a t t e r i n g  c o r r e c t i o n  was, t h e r e f o r e ,  6.2 x (C4-C5) and amounted t o  

t y p i c a l l y  a 3% e f f e c t  i n  t h e  pion s topping  r a t e s  and l e s s  than  a  1% e f f e c t  

i n  t h e  muon s topping  r a t e s ,  By t ak ing  i n t o  cons ide ra t ion  t h e  i n t e r a c t i o n  

of n e u t r a l  secondar ies  ( t o  be  d iscussed  i n  t h e  next  paragraph) i n  counter  

7 t h e  o u t s c a t t e r i n g  e f f e c t  was found t o  be reduced t o  gene ra l ly  l e s s  

than  2% and l / 2 %  i n  t h e  p ion  and muon c a s e s  r e s p e c t i v e l y .  I n  t h e  second 

run,  t h e  v e t o  coun te r s  were much c l o s e r  t o  t h e  t a r g e t  and c o r r e c t i o n s  f o r  

o u t s c a t t e r i n g  w e r e  ignored.  

A non-negl igible  c o r r e c t i o n  t o  t h e  veto-counter e f f i c i e n c y  a s  

we l l  a s  t o  t h e  o u t s c a t t e r i n g  c o n t r i b u t i o n  a r i s e s  Prom t h e  i n t e r a c t i o n  

of beam-associated n e u t r a l s  i n  counters  4 and 7.  The n e u t r a l s  i nc lude  

mesic x r a y s ,  meson-capture y r a y s ,  neuerons, and nuc lea r  y r a y s ,  and 

c l e a r l y  t h e r e  may be  s e v e r a l  a s s o c i a t e d  wi th  each stopped meson, With 

t h e  assumption t h a t  t h e r e  a r e  no n e u t r a l s  emi t ted  when t h e  t a r g e t  is  

out, i.e., a l l  counts  accumulated a t  @7 r e p r e s e n t  " t r u e  a c c i d e n t a l s v w ,  

the number of d e t e c t e d  n e u t r a l s  is g iven  by 

'C7'~arget I n  - 'C7'C2'Target Out ' C 2 ' ~ a r g e t  I n  

The number of d e t e c t e d  n e u t r a l s  per  meson s t o p  were a f a c t o r  of 3 o r  4 

g r e a t e r  i n  t h e  pion runs  than  i n  t h e  muon runs.  Data from t y p i c a l  pion 

runs i n d i c a t e d  approximate3.y t h r e e  emi t ted  n e u t r a l s  pe r  s t o p  i f  t he  



average i n t r i n s i c  de tec t ion  e f f i c i ency  is 2%. By including both the 

e f f e c t  of n e u t r a l s  and ou t sca t t e r ing ,  t h e  stopping r a t e s  were altered 

by a t  most 2%. 

Applying the  above cor rec t ions  t o  the  counted n u d e r  of stop 

s igna tu res ,  we obtained t h e  t o t a l  number of s t o p s  i n  the  t a r g e t .  It 

remained t o  determine t h e  pion contamination i n  t h e  muon runs and t h e  

muon contamination i n  the  pion runs. From range-eurve analyses and 

searches f o r  p ionic  x-ray peaks i n  muonic x-ray spectra59 w e  concluded 

t h a t  t h e  muon beam was f r e e  of pion contamination, 

According t o  range-curve analyses ,  t h e  stopping-pion beams 

i n  the  two runs contained respec t ive ly  about 6% and 9% muon contamination 

while investPgation of muonic x-ray peaks i n  the  pfonic x-ray spectra 

indica ted  contamfnations ranging from 2.5% t o  5% i n  the  f i r s t  run and 

2.5% t o  7% i n  t h e  second run. The genera l ly  l a r g e  u n c e r t a i n t i e s  

associa ted  with these  numbers do not  e n t i r e l y  exclude poss ib le  systematic 

d i f fe rences  between t a r g e t s .  Because of t h i s  d i f f i c u l t y  the  most probable 

value f o r  t h e  contamination was se lec ted ,  and i t  was assmed  the same 

f o r  a l l  t a r g e t s  i n  t h e  run. The values  used f o r  t h e  two runs were 

(3.5 9 1.01% and (5.0 9 2,0)% respec t ive ly ,  It should be noted t h a t  

these  u n c e r t a i n t i e s  i n  t h e  muon contaminatfon con t r ibu te  l e s s  than 2% 

t o  t h e  u n c e r t a i n t i e s  i n  the  f i n a l  va lues  f o r ' t h e  absolute  yields. 

The d i s t r i b u t i o n s  of s topping mesons i n  the  d i r e c t i o n  of t h e  

beam a x i s  were assumed t o  coincide  wi th  t h e  shapes of t h e  peaks i n  the 

range curves. Near t h e i r  maxima t h e  peak shapes were very nearly 

Gaussian which s impl i f i ed  computation. Uniformity over t h e  target  

plane, which was assumed i n  a l l  c a l c u l a t i o n s ,  was v i r t u a l l y  assured by 



the small size of the targets. This assumption was not critical because 

the symmetry of the target-detector geometry insured that final yield 

values would Rave a negligible dependence on the distribution in the 

target plane. 

D. Pionic and Pluonic X-Ray Yields 

The absolute and relative yields of all observed transitions 

were computed by dividing the disc-shaped targets into small annular 

elements, calculating the contribution for each element assuming isotro- 

pic x-ray emissionP6' then integrating over the target volume. The 

nuder of axial increments was chosen to insure that the x nays were 

attenuated less than 1% in traversing one incremental thickness. The 

results of the calculation were essentially independent of the number 

sf radial increments, which was selected to be 30 for all targets. 

These calculations were performed by computer which facilitated inves- 

tigating perturbations such as different meson-stop distributions and 

enlarged effective target volumes due to the divergence of the beam, 

Their contributions to the total. uncertainties in the yields were found 

$0 be negligible, The final yield values are presented in Tables IIP 

and V where they are compared with previously published results. The 

calculated values In Table 111 will be discussed in Sec. V. 

The muonic x-ray yields were measured to investigate systematic 

errors which might have arisen either in the experhents or in the data 

analysis; The R-series is particularPy useful for this purpose since 

it is generally accepted that the total series yield is very nearly unity 

in all elements with the probable exception of Ei. The pionic and muonic 



L-series x-ray y i e l d s  were measured a l s o  f o r  Mg and T i  s i n c e  these 

x-rays bracket  i n  energy the  K-series of @ and 8 ,  The y i e l d s  o b t a i r ~ e d  

f o r  these  vsreferencevf l i n e s  a r e  genera l ly  i n  good agreement w i t h  

e a r l i e r  work and with t h e  p red ic t ions  of the  cascade calcuBatBons 

(Sec. V) . 
The l a c k  of agreement between the  present  r e s u l t  f a r  the 

pionic  2p-ls y i e l d  i n  @ and t h a t  of o the r  experimenters may bee due in 

p a r t  t o  t h e  d i f f i c u l t y  of sub t rac t ing  t h e  muonic background from t h e  

p ionic  x-ray peak. The muonic np+ls x rays  (1123) a l l  f a l l  i n  the energy 

range spanned by t h e  broadened pfonic  Ka peak and Rave a y i e l d  approxi- 

mately a f a c t o r  of t e n  higher.  Thus wi th  a 5% muon contamination of 

the  pion beam one-third of t h e  "signalvq i n  t h e  region of t h e  p i s w i e  K a 

l i n e  w i l l  c o n s i s t  of muonic x rays .  The sub t rac t ion  of these  contami- 

nant peaks, the re fo re ,  r equ i res  p a r t i c u l a r  c a r e  s i n c e  t h e  r e s u l t  may 

s t rong ly  in f luence  t h e  measured c h a r a c t e r i s t i c s  of t h e  pfonic Xfne, In 

t he  present  a n a l y s i s  two d i f f e r e n t  techniques were used. Because the  

da ta  from t h e  f i r s t  experimental run contained some pionic  x rays  in 

aluminum (detec tor  c r y o s t a t )  on t h e  low energy s i d e  of t h e  @ pionlc Ka 

peak, t h e  peak was analysed only om t h e  high energy s i d e  of the centroid 

and t h e  uncer ta in ty  i n  the  f i n a l  r e s u l t  w a s  increased t o  r e f l e c t  the un- 

c e r t a i n t y  i n  t h e  cen t ro id  loca t ion .  I n  t h e  second experimental run t h e  

de tec to r  c r y o s t a t  was f a r t h e r  from t h e  beam and no x rays  from Al were 

evident;  t h e  e n t i r e  muonic K-series could then be subt rac ted  from the  

p ionic  spectrum using t h e  technique described i n  See. 1V.A. The y i e l d s  

thus obtained i n  the  two experiments were cons i s t en t  wi th in  approxi-- 

m t e l y  one standard devia t ion .  The n a t u r a l  broadening of t h e  p ion ic  Ka 

l i n e  was determined t o  be  approximately 3.2 keV and 2.7 keV $n the t w o  



experiments with the latter exhibiting the larger yield, as might occur 

for incomplete subtraction of the muonic background. We conclude that 

with muon contamination of the pion beam of the order of 5% it is 

unlikely that differences in background-subtraceion techniques could 

contribute an uncertainty larger than the 15% found in the present case. 

The oxygen pionic K x ray is contaminated by two nuclear y a 

rays in addition to the muonic x rays. Subtracting the entire muonic 

K-series Brow the pionic spectrum (see Sec. 1V.A) produced a much less 

cluttered spectrum in which the nuclear Y rays were clearly resolved 

and easily subtracted by eye. In comparing the yield obtained in the 

present investigation with those of earlier investigators the differences 

i n  apparatus and techniques should be noted. Pn particular the exgeri- 

lments of Camac et al.62 and Stearns et ale5 employed NaI(T1) crystals 

whose energy resolution was PncapabEe of resolving the nuclear y rays 

and muonie x rays just discussed, The y rays alone constitute approxi- 

mately 15% of the "signal" in the vicinity of the pionic H(ol peak. The 

analysis is further complicated if the two unidentified 'y rays near the 

expected location of the K peak are also target-associated, 63 
With regard to muonic x-ray background Stearns e t ~ t l . ~  did not 

discuss any corrections to their data for possible muon contamination in 

their pion beam. Camac et,1.62 deduced 1% muon contamination from 

their oxygen data and 9.5% from the nitrogen data but were unable to 

make determinations of contamination from the data for their other targets; 

for all targets except nitrogen they assumed a 1% muon contmination. 

More recently, Koch -- eL a1.19 using a high resolution Ge(Li) detector 

were able to compare accurately the intensities of the muonic x rays 



and p ion ic  x rays  i n  t h e i r  p ion ic  spect ra .  Knowing the  absolute ylelda 

of  t h e  (K-series) muonie x rays  and assuming t h e  muon c o n t a d n a t i o n  in 

t h e  pion beam t o  be t h e  same as t h a t  measured i n  two reference targets, 

they were ab le  t o  c a l c u l a t e  the  absolute  y i e l d s  of t h e  p i o n i ~  x ra~rs, 

Unlike the  results of t h e  present  experiment, t h e  absolute  yields ob- 

ta ined using t h i s  technique are very s e n s i t i v e  to u e e r t a l n t f e s  i n  the 

r a t i o  of  muon t o  pion s tops  f n  t h e  t a r g e t .  There e x i s t s  evidence i n  t h e  

present  work (see See, IV,@) and t h a t  of Ref. 62 which suggests  the 

p o s s i b i l i t y  of d i f f e r e n t  muon contamination f o r  d i f f e r e n t  t a r g e t s ,  While 

such a phenomenon seems very improbabfe, i t  could introduce systemtic 

e r r o r s  i n  any ana lys i s  which used muonfc x-ray l i n e s  as i n t e n s i t y  refer- 

ences and assumed a muon contarnination i n  t h e  pion beam which was inde- 

pendent of t a r g e t .  



Q. ATOH@ @AS@mE AN0 WCEEBR ABSORPTION 

The l e v e l  p o p d a t i o n s  P t o  be used i n  Eq. ( l a )  were deduced nR 

from the  absolute  y i e l d s  measured i n  t h i s  experiment. To accomplish 

t h i s  a ca lcu la t ion  of t h e  atomic cascade scheme was perfomed which 

predic ted  m s i c  x-ray y i e l d s  on t h e  b a s i s  of assumed values f o r  the  P 
nR0 

in general ,  y i e l d  data  were availc9bLe f o r  a s u f f i c i e n t  rider of x-ray 

t r a n s i t i o n s  i n  each element t o  permit an ma&iguous dete-nation of 

all l e v e l  p o p d a t i o n s  i n  t h e  cascade scheme. 

A. Descript ion of t h e  Cascade C d c u l a t i o n s  

The cascade calculationse'  a r e  near ly  i d e n t i c a l  t o  those done 

by Efsenberg and Kessler I2-I4 and by ~ o c h  -- e t  a l .  19'20 A t  the  beginning 

of a calcu%ation t h e  i n i t i d  population of t h e  angular momentm s t a t e s  

sf a hfgh n l e v e l  is assumed. The electroma@etic t r a n s i t i o n  r a t e s  a r e  

ca lcu la ted  using t h e  expressions given by de ~ o r d e ~ ~  and Burbidge and 

de ~ o r d e ~ ~  f o r  Auger emission of K and i - s h e l l  e l ec t rons  and f o r  E l  

r a d i a t i v e  t r a n s i t i o n s .  For t h e  c d c d . a t i o n  s f  these  rates i t  is assumed 

t h a t  a l l  bound s t a t e s  are adequately described by hydrogenic wave 

Pmctfona (pionic Is and 2p s t a t e s  which a r e  exceptions w i l l  be discussed 

l a t e r ) .  I n  t h e  present  work an approximatfoPP f s  used i n  which the  

s t a t e  of each p a r t i c l e  i n  t h e  mesic atom is character ized by Z ( f i e l d )  e f f  

and 2 (po ten t i a l ) ,  where Z ( f i e l d )  i s  t h e  e f f e c t i v e  charge which 
ef  f e f f  

appears i n  t h e  wave function, and Z (po ten t i a l )  is  used t o  c a l c u l a t e  e f  f 

the binding energy o r  t r a n s i t i o n  energy. The d i f fe rence  between 



'eff (po ten t i a l )  and Z ( f i e l d )  is t h e  "outer screening" contriblstlon 
e f f  

discussed by S l a t e r .  67 

I n  t h e  ca lcu la t ion  of the  e f f e c t i v e  charge t h e  meson rs assmed 

t o  be screened by only the  K-shell e l ec t rons ,  an excel lent  apprsxim%tion 

f o r  mesic l e v e l s  with n 5 28. Hydrogenic wave f m c t i o n s  a r e  used f o r  

the  e lec t rons ,  and t h e  ineson i s  assumed t o  be loca l i zed  a t  the Boht 

radius  

~i~ n 
2 

r = -  
n 

;e2 'eff ( f i e l d )  

where is the  meson reduced mass* 48 

The e lec t rons  are ecreened by t h e  o the r  e lec t rons  i n  t h e  atom 

a s  wel l  a s  by t h e  meson. Electron screening was computed using a tech#- 

nique very s i m i l a r  t o  S l a t e s ' s  s impl i f i ed  treatment of ion iza t ion  poten- 

t i a l s  i n  l i g h t  atoms .69 The screening of t h e  e lec t rons  by the  mesolr was 

estimated by ascr ib ing t o  a l l  p a r t i c l e s  wave fennctgons with maxima at 

t h e i r  Bohr r a d i i  and Gaussian r a d i a l  d i s t r i b u t i o n s  about these  maxima, 

Reasonable v a r i a t i o n s  i n  t h e  parameters used i n  t h e  screening caPcuia- 

t ions  were found t o  have an i n s i g n i f i c a n t  e f f e c t  on t h e  f i n a l  res111ts 

of the  cascade ca lcu la t ions .  The r e s u l t s  of t h e  screening calculations 

f o r  t h e  muonic carbon atom a r e  shown i n  Fig. 7. 

The nuclear  absorption r a t e s  from t h e  Is, 2p and 3d states of 

the  pionic atoms were t r e a t e d  a s  va r iab les  even though f o r  most elen~ents 

the r e s u l t s  of t h e  ca lcu la t ion  were s e n s i t i v e  t o  only one of these three 

parameters. Absorption r a t e s  from higher n l e v e l s  were obtained by mug- 

eiplying these  r a t e s  by sca l ing  f a c t o r s  R(nR/nvR) which were the ratios 



of the overlap of t he  square of the  pion wave functions with the nuclear 

volume. Using hydmgenic wave functions7' f o r  the  pion s t a t e s ,  we  ob- 

tained t o  f i r s t  order 

In the appnoximtion t h a t  the  pfonic wave functions f o r  s t a t e s  with 2 > O 

a r e  pnoportfonal t o  r ins ide  the  nuclear volume, one obtains the  same 

e q r e s s i o n s  a s  above f o r  the  r a t i o s  of the  squares s f  the  wave fmct fons  

at the nuclear surface o r  the squares of the  gradients of the wavefwnetioas 

integrated over the  nucPear voEme, Thus Eqs, ( I l l  a r e  Pargely indepen- 

dent of the  nature (s., l oca l  on non-local) of the absorptive in te r -  

action. For t h e  elements investigated i n  the  present work, absorption 

frm states wfth R > 2 is negl igible  and has been ignored, 

B. Choice of I n i t i a l  Level 

In the  cascade ca8cda t ion  one var ies  the  i n i t i a l  d i s t r ibu t ion  

of =sons i n  the  higher s t a t e s  and, i n  the  pion cascade, the nuclear cap- 

tu re  rates t o  obtain the  experimental x-ray yields.  The eascade para- 

meters, thus selected,  uniquely determine the populations PnR of t he  lower 

l eve l s  of the  mesic atom. Using the cascade calculat ion i n  t h i s  rnannen 

is the  equivalent of applying Eq. (PI self-consistently t o  a l l  observed 

x-rrpy fcrmsitions fa the  mesic atom, 



The i n i t i a l  d i s t r i b u t i o n  f s  e s tab l i shed  by specifying an i n i -  

t i a l  l e v e l  N and t h e  r e l a t i v e  populations Pm of t h e  angular  momentum 

s t a t e s  i n  t h a t  l eve l .  Because t h e  only cons t ra in t  on PNR i s  that tiha 

cascade ca lcu la t ion  reproduce t h e  experimental yfe lds ,  t h e  choice of N 

i s  c l e a r l y  somewhat a r b i t r a r y .  Economy of e f f o r t  would seem t o  indicate 

tha t  t h e  ca lcu la t ion  should begin a t  t h e  lowest value of N t h a t  i s  

physica l ly  reasonable, f o r  example, one not  much higher than that of the 

highes t  i n i t i a l  l e v e l  of an observed x-ray t r a n s i t i o n .  In  the present 

experiment t h i s  Bevel is  n = 6 corresponding t o  the  observed L and M 
6 "d 

t r a n s i t i o n s  i n  magnesium, Because i t  w a s  est imated t h a t  mresslved, 

very low i n t e n s i t y  x rays  may Rave o r ig ina ted  from as high as n = 8, i t  

was decided t o  begin t h e  cascade at  n = 9. The argument could be made 

t h a t  t o  begin t h e  cascade ca lcufa t fon a t  a somewhat hfgher level, w h i l e  

having i n s i g n i f i c a n t  e f f e c t  on t h e  deduced populations of the lower 

l e v e l s ,  would produce more use fu l  information about t h e  cascade i t s e l f ,  

However, t h e  e x p l i c i t  assumptions of t h e  cascade ca lcu la t ion  become less 

v a l i d  f o r  h igher  p r i n c i p a l  quantum numbers, and consequentBy t h e  deduced 

i n i t i a l  d i s t r i b u t i o n  has less physica l  s ign i f i cance .  FOP example, above 

6 an = ll i n  muonic L i  a t r a n s i t i o n  of An = I. by Auger e d s s i o n  of a K- 

she l f  e l e c t r o n  is energe t i ca l ly  forbidden. A s  the re  are no L-shell 

e l ec t rons  associa ted  with t h i s  mesic atom, which behaves chemfcaHLy Pike 

6 a ~e~ impurity i n  a L i  l a t t i c e ,  these  t r a n s i t i o n s  must occur radia- 

t i v e l y  or  by i n t e r a c t i o n  with a conduction e l e c t r o n  i n  t h e  host  Bartice, 

This P a t t e r  i n t e r a c t i o n  is not  computed in t h e  cascade ca lcu la t ion ,  

9 3.2 Also, Pn Be and @ t h e  E-shelf efee t rons  are conduction e lec t rons  



b e t t e r  described by Bloch s t a t e s  than by hydrogenic wave funct ions ;  when 

fn te rac t ions  with these  e lec t rons  a r e  significarnt i n  t h e  cascade process,  

the  present  ca lcu la t ion  is c l e a r l y  inadequate, Hn addi t ion ,  e l e c t r o n  

screening becomes more important a t  higher w l e v e l s ,  s igraif icantly r a f s -  

Png t h e  s t a t e s  with l a r g e  angular  momentme Sl id ing t r a n s i t i o n s  (An = 0, 

AL = -1) are then more probable but  a r e  rase considered i n  t h e  present  

craBculation, Final ly ,  the re  is  evidence t h a t  i n  many substances l a r g e  

mesic molecules are formed, and t h e  meson may not  be bound t o  a p a r t i -  

c u l a r  atom u n t i l  i t  a r r i v e s  at a very low (n 'L 7) l e v e l ,  7 8 

W e  conclude t h a t  " i n i t i a l "  d i s t r i b u t i o n s  deduced with e x i s t i n g  

cascade ca lcu la t ions  become increas ingly  suspect  f o r  l e v e l s  much higher 

than n "L 9, t h e  a c t u a l  upper l i m i t  &pending on t h e  11mture of t h e  t a r g e t  

mater ia l ,  the  accuracy des i red ,  and t h e  soph i s t fca t ioa  of the  ca lcu la t ion ,  

Thus i f  the  primary ob-Ject of the  c d c d a t i o n  is  t o  ob ta in  t h e  populations 

of t h e  Power atomic IleveBs, beginning t h e  cascade at  high n appears m- 

C, Results  of t h e  Cascade Calculat ion 

The i n i t i d  meson population of t h e  angular momntm s t a t e s  i n  

the .on = 9 l e v e l  w a s  found genera l ly  &o b e  adequately described by a modi- 

f i e d  s t a t i s t i c a l  d i s t r i b u t i o n  

where 8 i e  chosen such t h a t  t h e  cascade ca lcu la t ion  reproduces the  experi-  

mental x-ray y ie lds .  





L-shell electrons from his calculation probably resulted in an under- 

estimate of the mixed-transition rate. Using his expression for the 

fraction of 2p mixing and hydrogenic wave functions for the L-shell 

electrons, one obtains only a small contribution to the mixing rate. 

However, it may be that the near-zero energy required to excite a 

conduction electron (a factor which enhances the mixed-transition 

irate) compensates sufficiently for the small wave function overlap 

of the conduction electrons with the meson so that a more exact 

analysis is fequired. 

In the interpretation of the cascade calculations it was 

assumed that the total K-series muonlc x-ray yields should be unity in 

a19 elements with Z - > 4.  Therefore, the predicted 2s-state population 

was added to the 2p-state population to obtain the total number of 

mesons which produce K x rays. POP Li we used the estimated value l 1 
01 

sf 0.58 for that fraction of the 2s-state population which decays by 

the  88 = 8, radiationless Auger transition, 

To determine the value of - a in expression (12) that best de- 
scribes the "initial" population, the yields predicted by the cascade 

calculation were compared to the experimental measurements. Relative 

yields, because of their smaller experimental uncertainties, generally 

were the most significant in determining 2. As illustrated in Fig. 8 

12 for muons in C , the value 2 = +0.32 - 4- 0.07, which is the weighted 

average of z19 E~~ z3, and %) is seen to reproduce satisfactorily the 

experimental values. The results of this analysis for all muonic 

atoms are listed in Tables IIP and IV. 



The pion-cascade calculat ions  contained one var iable  i n  addi- 

16 t ion  t o  2: I' (cap) i n  ~ i ~ ,  J3e9 , c12 and 0 ; I'3d (cap) i n  Ng and T i .  
2~ 

The capture r a t e s  from the  other angular momentum s t a t e s  e i t he r  have 

been d i r ec t l y  measured o r  were extrapolated from d i r e c t  measurements i n  

h i g h e r 4  elements using wave function overlap arguments; l a rge  var ia t ions  

i n  these capture r a t e s  had negligible influence on y ie lds  predicted by 

the cascade calculations.  These r a t e s ,  expressed i n  terms of t he  widths 

of the  corresponding s t a t e s ,  a r e  denoted by superscr ipt  (a) i n  the  Past 

three  columns of Table V I .  

Two techniques were used t o  s e l e c t  t he  " in i t i a l "  population f o r  

the  pion-cascade calculation.  The f i r s t  assumes t h a t  when the  pion and 

muon have the  same binding energy they have the  same d is t r ibu t ion  among 

angular momentum s t a t e s  i n  t h e i r  respect ive  n levels .  Because of the  

larger  mass of t he  piqn, i t  has approximately the  same energy i n  the 

n = 11 leve l  a s  a muon i n  n = 9; by the  above assumption, the  populations 

of the  pionic and muonic angular momentum s t a t e s  i n  these leve ls  may be 

described by the  same value of a. This method has been used by 

~ a c k e n s t o s s ' ~  who then assigns a 10% uncertainty t o  the population of 

the  lower pionic l eve ls  t o  account f o r  possible di f ferences  i n  the  muon 

and pion cascades. 72 

The second technique is  essen t ia l ly  i den t i ca l  t o  t ha t  described 

e a r l i e r  f o r  the  muon cascade calculat ion.  I n  pionic atoms ce r t a in  y ie lds  

a r e  approxiwtely  independent of var ia t ions  i n  nuclear capture r a t e s  

but a r e  functions of 2. In  Fig. 9 predicted c12 pionic x-ray yielda a r e  

shown a s  a function of I' (cap) f o r  several  values of g. I n  t h i s  case, 
2? 

the  r e l a t i v e  y i e ld  L /L implied g = 9-0.49 + 0.09 which was i n  turn used 8 a 
I 
I 

I 
I 

I! 



in conjunction with t h e  absolute  y i e l d  of t h e  K - l ine  t o  ob ta in  a 

r = 2,6 9 0.9 eV. This  second technique was used f o r  a l l  elements 
2;19 - 

except oxygen, magnesium, and t i t an t ium,  f o r  which i n s u f f i c i e n t  y i e l d  

data  required use of t h e  f i r s t  technique. The results of t h i s  ana lys i s  

are presented i n  Table VP. The l e v e l  populations a r e  l i s t e d  f o r  compari- 

son with t h e  r e s u l t s  of o t h e r  inves t iga to r s  who have done s i m i l a r  cascade 

calcullations but  have used d i f f e r e n t  " i n i t i a l f v  d i s t r i b u t i o n s .  Best - f i t  

ca lcu la ted  values have not  been l i s t e d  i n  Table V because general ly the  

cascade parameters were not  o v e r d e t e d n e d .  

n ' t  ' 
B e c a ~ s e  rag (cap) is  approximately propor t ional  t o  r nR h a d )  

for t h e  t r a n s i t i o n s  inves t iga ted  i n  t h e  present  work, systematic e r r o r s  

in t h e  ca lcu la t ions  of t h e  r a d i a t i v e - t r a n s i t i s n  r a t e s  a r e  d i r e c t l y  

r e f l e c t e d  i n  the  deduced values f o r  mg(cap).  Exact p ionic  2p-ls radia-  

9 
t ive r a t e s  which have been e a l c d a t e d 1 8  f o r  Be  c12, and 016 were used 

i n  t h e  present  ana lys i s ,  These ca lcu la t ions  incorporated no t  only t h e  

strong-llmteractllon energy s h i f t  02 t h e  Is s t a t e  bu t  a l s o  t h e  d i s t o r t i o n  

o f  t h e  Is and 2p-state wave funct ions ,  For t h e  2p-Is t r a n s i t i o n  i n  E i  
6 

hydrogenic wave f u n ~ t i o n s  were used i n  conjunction wi th  t h e  experimen- 

tal energy f o r  t h i s  t r a n s i t i o n  i n  order  t o  ob ta in  t h e  r a d i a t i v e  r a t e .  

From t h e  results of  Ref, 18,  we  est imated t h a t  t h e  3d-2p ca lcu la ted  

r a d i a t i v e  rates i n  Mg and T i  should be increased by 0.9% aund 2%, respec- 

t i v e l y ,  t o  compensate f o r  s t rong- in teract ion e f f e c t s .  It i s  assumed 

t h a t  t h e  e r r o r s  introduced by using these  approximate rates f o r  Li, Pig 

and T i  are much smaPler than t h e  assigned u n c e r t a i n t i e s  i n  t h e  values 

fo r  t h e  y i e l d e  and t h e  state populations. 



The cascade ca lcu la t ion ,  constrained t o  reproduce the ob- 

served x-ray y i e l d s ,  p r e d i c t s  t h e  population p robab i l i ty  and the  capture 

probab i l i ty  f o r  a l l  p ionic  s t a t e s  i n  t h e  atom. The products of these 

two p r o b a b i l i t i e s  c o n s t i t u t e  t h e  capture schedule f o r  t h e  mesic atsnr, 

The capture  schedule f o r  t h e  lower l e v e l s  i n  p ionic  1i6 is  given i n  

Table V I I .  

D. Effec t s  of F i n i t e  Electron-Refi l l ing Times 

I n  t h e  cascade ca lcu la t ions  j u s t  described i t  has been PmgLi- 

c i t l y  assumed t h a t  a l l  e l ec t ron  bound s t a t e s  i n  t h e  mesic atom are filled 

whenever t h e  meson makes an.ePectromagnetic t r a n s i t i o n .  In f ac t ,  of 

course, t o  f i l l  an e lec t ron  vacancy (created by an Auger process) requires 

a f i n i t e  time which depends on t h e  quantum number of t h e  vacancy, the 

ion iza t ion  s t a t e  of the  atom, and t h e  e l e c t r o n i c  p roper t i e s  o f  the  host 

material .  

Estimates of r e f i l l i n g  t i m e s  were obtained from experimental 

73 and t h e o r e t i c a l  values of f lorescence  y i e l d s  toK and % f o r  K and 

L-shell e l ec t ron  vacancies, where t h e  f lorescence  y i e l d  i s  the  probabi- 

l i t y  t h a t  t h e  vacancy w i l l  be f i l l e d  vfa a r a d i a t i v e  t r a n s i t i o n *  The 

competing process is t h a t  of Auger emission i n  which two vacancies are 

produced i n  t h e  higher s h e l l  from which t h e  o r i g i n a l  vacancy w a s  r e f i l l e d .  

The K f lorescence  y i e l d  is  then t h e  r a t i o  of t h e  rates: 

"K - AK(radiat ive)  /hK(toLal) 

where 

XK(total)  = AK(radiative) + hK(Auger) 



For an isolated oxygen atom it has been estimated73 w = 0.0045. The K 

electronic 2pls radiative rate is (rad) r. 3 x 10" sec-I which M 

implies a total refilling rate 

For a reasonable number of k-shell electrons in the atom this result 

should be essentially independent of 2. The above estimate is ifi 

reasonable agreement with the results of a recent detailed calculation 7 4 

1 4  -1 for neon which predicts a K-shell. refilling rate of 3.71 x 10 see . 

Similarly, an examination of typical E-shell florescence yields indi- 

cates, for isolated atoms, an L-shell refilling rate 

FOP atoms embedded in solids or liquids, there will be significant 

corrections to these rates, especially for low-Z elements, For example, 

Sf the E-shell comprises the conduction band as it does in Ei, Be, and @ 

the refilling rate for "L-shell" vacancies will be dependent on the 

characteristics of the lattice. 75 In addition, the rate for refilling 

K-shell vacancies from the conduction band is expected to differ from 

that for refilling from the E-shell in an isolated atom, and estimates 

of the difference are subject to large uncertainties. In higher Z atoms 

the possibilities exist of high degrees of ionization, ionization of 

neighboring atoms, and displacement of the ion in the lattice.76 in 

view of the many complicating factors, the estimates (13) and (14) were 

taken as initial guesses in our calculations and were varied by an order 

of mgnitude in investigating the effects of finite refilling times. 



In Table VIII are listed the total electromagnetic transition 

rates for muons in C12 calculated with the assumption that all five 

electron states are filled, Auger emission of K-shell electrons domi- 

nates for transitions from levels above the dashed line (emission of 

E-shell electrons becomes significant for n > 11). Comparing these 

transition rates with the refilling rate (131, it is seen that the atom 

should be partially fonized when the meson occupies states in the 

vicinity of and above the solid line in Table VIII. The rad%ative tran- 

sition rates out of these states are so small that the meson remains in 

these states until the electron K-shell is at least partially r e f i l l e d ,  

Thus the Auger process still determines the nature of the cascade, and 

the populations of the lower levels will be unaffected. Arguments iden- 

tical to these may be applied to the other elements under investigation* 

If, however, the K-shell refilling rate is seibstantially 

smaller than (13), then radiative rates will begin to compete effective- 

ly with Auger rates in mesic states with n % 4. The character of the 

cascade will then change because of the preference for large changes in 

n by radiative transitions as opposed to the An = 1 transitions pre- 

ferred by Auger processes. 

There have been two approaches to the problems posed by finite 

electron-ref illing times. Eisenberg and ~esslerl~ emphasized chat the 

nature of the cascade would be unaffected for high n where the Auger 

process dominates; in the lower levels where radiation begins to compete, 

total transition rates were assumed small enough to permit complete 

refilling. Therefore, they made no explicit adjustment in the calcula- 

tion to reflect incomplete refilling of the electron states, and any 



poss ib le  e f f e c t s  on t h e  nature  of  the  cascade were absorbed i n t o  an 

adjus table  parameter used t o  describe t h e  i n i t i a l  d i s t r i b u t i o n .  

65 
~ u z u k i , ~ ~  de Borde, and Berezin -- e t  al.16 simulated t h e  

e f f e c t s  of f i n i t e  r e f i l l i n g  times by assuming a small eqdil ibrium 

ellectron population i n  t h e  mesic atom which was maintained throughout 

the meson cascade. This was accomplished by reducing t h e  ca lcula ted  

Auger rates t o  r e f l e c t  t h e  reduced occupation p robab i l i ty  of t h e  e lec t ron  

s t a t e s ,  The assumption t h a t  t h e  number of e lec t ron  vacancies is  inde- 

pendent of  t h e  i n i t i a l  meson s t a t e  appears tenuoug i n  view of t h e  l a r g e  

d i f ferences  i n  t r a n s i t i o n  rates displayed i n  Table VIIH. 

I n  t h e  present  work i t  w a s  assumed t h a t  t h e  r e f i l l i n g  of 

vatlancies i n  t h e  e l e c t r o n i c  K and E-shells c o d d  be character ized by 

average r e f i l l i n g  times rK and T which were t r e a t e d  as ad jus tab le  para- 
L 

meters. Beginning t h e  cascade a t  n = 9 with an assumed i n i t i a l  popula- 

t i o n  of t h e  e lec t ron  s h e l l s  t h e  ca lcu la t ion  progresses through the  

cascade, computing t h e  number of e lec t ron  vacancies a t  t h e  t i m e  t h e  meson 

a r r i v e s  a t  a given s t a t e ,  then r e f i l l i n g  the  vacancies t o  maximize t h e  

t o t a l  t r a n s i t i o n  r a t e  out  of t h a t  s t a t e .  The t o t a l  l i f e t i m e  of t h e  mesic 

l e v e l  is  obtained by combining i n  quadrature t h e  r e f i l l i n g  t i m e  and t h e  

inverse  of t h e  t o t a l  Auger decay r a t e ,  then adding t h e  result t o  the in-  

verse of t h e  t o t a l  r a d i a t i v e  decay rate. While t h i s  approach f o r  cal-  

e d a t i n g  t h e  e f f e c t s  of incomplete e l e c t r o n  r e f i l l i n g  is  l a r g e l y  i n t u i -  

t i v e ,  t h e  results of t h e  ca lcu la t ions  i n d i c a t e  t h a t  a more r igorous 

m a f y s i s  is not  warranted at  t h i s  t i m e .  

The y i e l d s  predic ted  by t h e  cascade c a l c d a t i o n  f o r  both 

muons and pions i n  a l l  elements i n  t h e  present  study were a f fec ted  l e s s  

than 1% by r e f i l l i n g  rates (13) and (14); t h e  e f f e c t s  w e r e  less than 2% 



when these r a t e s  were halved, I n  Mg and T i  r e f i l l i n g  r a t e s  whi.ch were 

an order of mgni tude  smaller  than (13) and (14) were found t o  a l t e r  

the  predic ted  y i e l d s  by about 8%; however, t h e  e f f e c t  could be e o ~ l e t e l y  

compensated f o r  by an increase  i n  a, Eq. (12). These results contradic t  

those of Ref. 77 i n  which i t  was found t h a t  t h e  r e l a t i v e  i n t e n s i t i e s  of 

the  muonic K-series i n  Mg could be described by a s t a t i s t i c a l  i n i t i a l  

d i s t r i b u t i o n  i n  R i f  it were assumed t h a t  t h e  r e f i l l i n g  t i m e s  were long 

enough t o  insure  t h a t  t h e  atom was always i n  a highly ionized s ta te  and, 

f u r t h e r ,  t h a t  the  same i n t e n s i t i e s  could no t  be obtained simply by 

increas ing - a. 

The Mg and T i  rnuonfc x-ray y i e l d  d a t a  could not  be reproduced 

by the  present  cascade ca lcu la t ion  wfth an assumed i n i t i a l  d i s t r i b u t i o n  

given i n  the  form (121, even f o r  very l a r g e  r e f i l l i n g  t i m e s .  By trial- 

and e r r o r  an i n i t i d  d i s t r i b u t i o n  was found which gave s a t i s f a e t o s y  

r e s u l t s  as l i s t e d  i n  Table 111. This s p e c i a l  d i s t r i b u t i o n  is  illustrated 

i n  Ffg, 1 0  where it is compared wi th  a s t a t i s t i c a l  d i s t r i b u t i o n  a d  a 

modified s t a t i s t i ed  d i s t r i b u t i o n  Eq. (12) wi th  - a = +0.40. It s h o d d  be 

noted thae  t h i s  s p e c i a l  form f o r  t h e  i n i t i a l  d i s t r i b u t i o n ,  bile not  

unique, does sirnutate t h e  r a t h e r  i r r e g u l a r  cascade scheme recent ly  

predfc ted  for l a r g e  mesic moleedes .  71 



VH. DISCUSSION 

A. Summary of Experimental Results 

The primary object of the present investigation was to deter- 

6 mine the strong-interaction broadening sf the 2p pfonic levels in Ei , 

~ e ~ ,  c12, and 016. The 2p widths in c12 and 016 are in clear disagree- 

ment with previously reported results, as can be seen from Table VI and 

Fig. 11. The primary source of the discrepancy is in the different 

values obtained for the absolute yields, as discussed in Sec. IV.D, and 

not in the level populations determined with the cascade calculations. 

The present results for J3e9, which are in excellent agreement with those 

18 
of Backenstoss, disagree with the published results of Berezin et al., 

16 

again primarily because of different yield values. On the other hand, 

the apparent equality of the widths in 1i6 and 1i7 is due entirely to 

the different predictions for the 2p-level populations in the two elements. 

Because the level populations are largely determined by atomic properties, 

it is expected that the difference is computational rather than physical. 

B. Comparison with Theory 

The previously noted uncertainties and inconsistencies among 

the predictions (31, ( 4 1 ,  and (5) of the field-theoretical calculations 

make comparison with experiment difficult. These theories generally 

have no adjustable parameters except for a variable which appears in the 



phenomenological nucleon c o r r e l a t i o n  funct ion .  I n  order  t o  isolare 

the  var ious  e f f e c t s  which inf luence  t h e  absorption process and determine 

t h e i r  r e l a t i v e  importance, most authors  omit o the r ,  o f t e n  s i g n i f i c a n t  

phenomena from t h e i r  ca lcu la t ions .  It is noteworthy t h a t  such ca lcula-  

t i o n s ,  i n  s p i t e  of these  omissions, have predic ted  absolute  absorption 

r a t e s  wi th in  a f a c t o r  of f i v e  of t h e  observed values.  Furthermore, the  

of t h e  pion absorpt ion  r a t e  on e x p l i c i t l y  nuclear  p r o p e r t i e s  

u., nuclear  e x c i t a t i o n s  and f i n a l - s t a t e  i n t e r a c t i o n s )  has been 

i nves t iga ted ,  and t h e  r e s u l t s  should be  use fu l  f o r  understanding dis- 

crepancies between the  p red ic t ions  of t h e  phenomenological models and 

experimental observations.  

The o p t i c a l  p o t e n t i a l  Eq. (S ) ,  which is based on a multiple- 

s c a t t e r i n g  theory,  has ,  i n  p r i n c i p l e ,  no ad jus tab le  parameters. However, 

because of t h e  overs impl i f ied  form of t h e  c o r r e l a t i o n  funct ion  which was 

used i n  t h e  de r iva t ion ,  t h e  -- ad hoc c o r r e l a t i o n  parameter 5 was i n t r aduced  

21 . a s  a poss ib le  va r i ab le .  Cohfoming wi th  K r e l l  and Ericson we nave set 

5 = 1 i n  t h e  present  ana lys i s .  The model then p r e d i c t s  t h e  abso lu te  

pion absorpt ion  r a t e ,  a s  w e l l  a s  t h e  dependence of t h i s  r a t e  upon Z and 

upon o t h e r  p r o p e r t i e s  of t h e  nucleus. It should be r e a l i z e d ,  however, 

t h a t  t h e  r e l a t i v e  r a t e s  f o r  d i f f e r e n t  n u c l e i  a r e  model-~wde- 

pendent, t o  a  f i r s t  approximation. Thus agreement between theory and 

experiment Z (or A) dependence of t h e  r a t e s  j. 1s no 

ind ica t ion  of t h e  model. It is t h e  znbilliity of 

the  theory t o  p r e d i c t  abso lu te  r a t e s  and model-dependent phenomena, s u c h  

a s  i sosp in  e f f e c t s ,  which must be 



By constraining the constant parameters in the optical 

potential such that the model "predictsP' observed pionic x-ray energies 

and widths, one obtains a set of "best fitqD parameters which may thew 

be used to predict the energies and widths of x-ray lines which have 

not yet been measured. More significantly, the comparison of these 

parameters to those predicted from ??-nucleon scattering lengths and 

pion production cross sections, as discussed in See. II., constitutes a 

test of hypotheses upon which these predictions are based. In particular 

the 2p, 3d, and 4f-level widths determine the "best fit" value for ImCo 

in Eq. (8) while having relatively minor influence on the other para- 

meters. 21 Isospin dependence of the absorption rates has been investi- 

gated and found to be negligible within the present experimental 

uncertain tie^.^^ Thus ImC is determined by essentially a one-parameter 
0 

fit to the measured widths of the 2p, 3d, and 4f levels, for which there 

is a wealth of experimental data. l 8 

The technique employed in the present analysis was to use 

optical-potential parmeters obtained from a best Bit to selected pionic 

x-ray data to predict 2p-level widths in Pow-Z elements. 78 The best-fit 

analysis was limited to direct linewidth measurements of monoisotopic, 

aon-deformed nuclei whose charge distributions had been determined 

experimentally. The requirement that the linewidth be measured directly 

rather than by the indirect, yield method insured that the resulting 

best-fit parameters were not biased by possible systematic errors in the 

indirect method. Thirty-eight targets fulfilled the monoisotopic and 

spherical-nuclei requirements, and direce width measurements of either 

t he  2p, 3d, or 4f level had been made in 16 of the 38 nuclei. 



4 3 
The optical potential of Anderson, Jenkins, and Powers w a s  

used to analyse these data. It differs slightly from that of E:q, (8) 

in that the potential is written in a form emphasizing ice dependence 

on the neutron, proton, and matter densities. Using the e w e  notatloo 

ae Eq. (8) and assuming epherica1 spetry, they write: 

aO(d = -4vIc;p (r)+c; (pn (TI-P P (r)*iImC;~ (r)~ n (r) 1 

where 

b; - plbo = l.15bo 

bi - plbl = 1.15b1 

B' - poBop(r)pp (r) Z 2.14Bo 
0 

(1 6) 
C; - p;'co = 0.87Co 

C; - pilcop (r)/pp (r) z 1 .86Co 

The methods used to determine the nucleon densities and the general 

calculational techniques are described in Ref. 43. The best-fit 

parameters (16) obtained from the selected pionic x-ray data are I f s ted  

in Table XX. For comparison we list the parmeters selected by 

Backenstoss" on the basie of a large eet of x-ray data which was not 

restricted by any specific criteria and, in particular, included indirecit 

widgh meaeurmente. In c~llurna (3), Table IX are the tltrao~eticeL 



prtedictions taken from Ref, 21. We see t h a t  t h e  agreement amng  t h e  

t h r e e  sets of real. parameters is  q u i t e  good; both b e s t - f i t  values f o r  

X d  a r e  about a f a c t o r  of two l a r g e r  than t h e  t h e o r e t i c a l  predic t ion;  
o 

and t h e  value f o r  ImCo obtained with t h e  se lec ted  x-ray da ta  is  a l s o  a 

f a c t o r  of two l a r g e r  than predic ted ,  

It is  of i n t e r e s t  t o  determine i f  t h e  o p t i c a l  p o t e n t i a l  

[Eqs. (8) and (IS)] may be appl ied  t o  low-Z elements without changing 

the constant  parameters of column (21, Table IX .  These b e s t - f i t  

p a r m e t e r s  were, the re fo re ,  used t o  p red ic t  t h e  2p-level widths f o r  

elements with A < 30. These p red ic t ions  are shown a s  a s o l i d  l i n e  i n  

Pig.  11, where t h e  open c i r c l e s  a r e  t h e  r e s u l t s  of t h e  present  experi- 

ment, the  open squares are from Ref. 16, and t h e  open t r i a n g l e s  from 

R e f .  18. The closed c i r c l e s  a r e  t h e  d i r e c t l y  measured 2p l inewidths of 

t h e  se lec ted  n u c l e i  used t o  ob ta in  the  bes t  f i t  given by the  s o l i d  curve 

f o r  A > 30. The s o l i d  t r i a n g l e  i s  a revision18 of an e a r l i e r  d i r e c t  

31 measurement of t h e  2p-level width i n  P . This rev i s ion ,  because it 

represents  such a s m a l l  f r a c t i o n  of t h e  t o t a l  amount of d a t a  used, should 

have a very small e f f e c t  on t h e  b e s t  f i t  given by t h e  s o l i d  curve.79 The 

lower, broken l i n e  i n  Fig. 11 is t h e  f i t  of Ref. 18  obtained with t h e  

p o k n t i a l  Eq, (8) and t h e  c0nstan.t parameters of c o l  ( I ) ,  Table I X .  

It should be remembered t h a t  t h i s  lower curve was p a r t i d l y  constrained 

by t h e  wid ths ' ind ica ted  by t h e  open t r i a n g l e s .  

The advantage of displaying "reduced" widths ( e s s e n t i a l l y  

6 
div i s ion  by Z ) versus  t h e  atomic mass number A, as i n  Fig. 11, is t h a t  

m e t  of t h e  model-independent behavior is removed. I n  t h e  present  case, 

because t h e  isospAir, dependence of  t h e  d d t h  was a s s m e d  neg l ig ib le ,  t h e  



irregular shapes of the best-fit curves and the extrapolated curve are 

influenced by variations in the density factors p (r), r and p(r) 
I' 

among the different nuclei. 

C. Conclusions 

1. Experimental Techniques 

Any comparison between the experimental technique used in 

the present investigation and that of the @ERN group l9 '20 will have 

to be tentative as only three points of comparison (13eg9 c~~~ and 016) 

are presently available. For CI2 and 016 the discrepancy is irreconcil- 

able although the uncertainties assigned to the present measurements are 

large. While the agreement between the two techniques for is 

excellent, it should be noted that this width is clearly inconsistent 

with the trend indicated by the lower broken line of Fig. 11 and is in 

somewhat better agreement with predictions based on selected x-ray data 

(dashed line). The precision of the present technique would be improved 

through the use of thinner and smaller targets to reduce uncertaint~~es 

in the self-absorption calculations and the geometrical correetioas, 

higher-resolution detectors (unfortunately this usually implies smaller 

active volume) to reduce uncertainties in the background, and more data 

to reduce the statistical fluctuations. These improvements will necesai- 

tate longer data-accumulation times or more intense pion beams, 

The @ERN technique involves fewer corrections than the present 

method to obtain a yield value from the raw data and is, therefore, 

inherently capable of higher precision, Because the @ERN method 

requires precise knowledge of the ratio of muons to pions s topp ing  :Ln 



the targer, it would seem worthwhile to check this ratio for several 

targets 
16 . , c12 and 0 ) This could be done by using the same 

technique to determine the absolute E-series yields as is used for the 

R-series yields. Because the L-series in these low-Z elements is 

relatively unaffected by nuclear absorption, their intensities may be 

determined with conventional cascade calculations constrained to 

reproduce the more precise relative yields (e.g., L /L ). 63 a 

2. The Optical Model 

The results of the present experiment are in satisfactory 

agreement with predictions based on an optical-model potential whose 

constant parameters had been determined using selected data, largely 

from higher-Z elements. The best-fit parameters for the absorptive 

terms in this potential (ImBo and ImCo in column ( 2 ) ,  Table IX) are in 

disagreement by factors sf two with those predicted by the quasi-deuteron 

absorption model. 

On the basis of the present experiment the possibility cannot 

be ruled out that the 2p absorption rates in low-Z elements are somewhat 

larger than those predicted by the optical model, If such a phenomenon 

exists, it would be interesting to determine if the same mechanism might 

not also be responsible for the apparent leveling-off of ls absorption 

rates for Z 2 9. More precise measurements of 2p-level widths are 

needed in the experimentally difficult range 12 < A < 40. 

The specifically nuclear effects of final-state interactions 

batween the residual nucleus and the emitted nucleons and of nuclear 



excitations are not considered in the quasi-deuteron absorprion rnodei, 

One might speculate that if these effects could be incorporated into the 

model, perhaps as corrections, a more realistic comparison with absolute 

rates should result. Until existing experimental and theoretical 

uncertainties are reduced, it seems unlikely that we will be able to 

obtain detailed nuclear structure information from pion absorption rates 

in complex nuclei. 

3. Atomic Cascade Processes 

The mixed Auger-radiative transition proposed by Ruderwan 
11 

appears to be completely effective in depopulating the tnetastable muonie 

2s level in elements with Z '< 6 with the probable exception olf Li, The 

results of the present experiment are not inconsistent with mixing rates 

calculated in Ref. 11; the calculated decay time for the 2s stalLe % 

this transition is about 40 nsec for Li. Thus delayed-coincidence 

experiments are a possible means for investigating this phenomenon, 

By using existing cascade calculations one may be able ro 

a a 
investigate the possible formation of large mesomolecules 3.n elements 

for which several x-ray series are measured with good precision. The 

technique was suggested by the present analysis of muonic Mg and T i  

for which the results could be interpreted in terms of the mesomolecule 

hypothesis. 
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Table 111, Summary of experimental muonic x-ray y i e l d s ,  and 

comparison wi th  the  r e s u l t s  of t h e  cascade ca lcu la t ions ,  

Energy Yields 
Elenlent Line (kev) Present  0 t h e r s  ~ a l c u l a t e d "  

- 
1i6 K~ 18.6 0.67+0.08 - 0 , 6 7 + 0 , 0 3 ~  - 

0.72+0. - Ose 
Be 9 

33.4 0.7590.07 0,75+0,03 f Ka - - 
K B 39.5 0.20t0.03 - 0,2@k0,02 - 

K 41.6 0.06+0.02~ 0,0%+0,02 b 
Y - - 

A l l  K 1.01+0.12 - l.09+0.13e - 1, 0 0 ~  

0. 83C0.07~ - 

La 6.1 0.48+0.15 - 0. 33e (D 34+0,02 - 

L~ 
8.4 0,021+0.015 - 0.02%+0,002 - 

L 
Y 

9.3 0.003+0.002~ - 0.0025+o. 0005~ 

A l l  L 0.50t0.17 - 0.38+0.09~ - 0.37+0,0:8. - 



Table 111, (continued) 

Xnergy Yields 
Element kine (ken Present Others ~alculated" 

- 
cX2 75.2 0.6W0.05 - 0.69+0.03~ - 

K B $9.3 0.19+0.02 - 0.2W0.01 - 

K 94.3 0.13-0.02~ - 0.10r0.02~ 
Y - 

All K 0.95+0.09 - 0.97+8.log - 1.00 
f 

~ ~ / A 1 1  R 0.66-l-0.02 - 0.86-l-0.03' - 0.69+0,03~ - 

0.71' 

La 13.9 

L B 18.9 

L 21 
Y 

All L 

All K 



Table 111. (continued) 

Energy Yields 
Element Line (kev) Present  Others @aiculateda 



Table III. Footnotes 

a 
Best- f i t  f o r  i n i t i a l  d i s t r i b u t i o n  Eq. (12), Corresponding values of - a 
a r e  l i s t e d  i n  Table I V .  

b 
Includes contr ibut ions  from a l l  higher-energy t r a n s i t i o n s  i n  t h e  series. 

%. B. Stearns e t  a l .  (19691, Ref. 15. -- 
ci 

PncPudes mixed-in contr ibut ion from 2s state; see t e x t .  

e 
%. Berezin e t  al, (19701, Ref. 16. -- 

f 
Total  K-series y i e l d  assumed equal  t o  un i ty ,  

'J. E. Eathrop -- e t  al. (19611, Reef. 7, 

' ~ f e e r  M. 8. S t e a m s  e t  al. (19691, Ref. 15, with t o t a k  K-series y i e l d  
equal  t o  uni ty .  

i ~ f t e r  A .  Suzuki (19671, Ref. 76. These values were used i n  de te  
the  " i n i t i a l "  d i s t r i b u t i o n ,  Table IV .  

'obtained using a s p e c i a l  i n i t i a l  d i s t r i b u t i o n ,  see  t e x t .  Typical un- 
c e r t a i n t i e s  are - 4- 18%. 

kAfter D. Kessler e t  a l . ,  Phys. Rev. L e t t e r s  18, 1179 (1967). These val -  
ues were used i n  determining t h e  " i n i t i a l "  d i s t r i b u t i o n ,  Table I V .  



Table I V .  Muonic-cascade parameters for a modified 

Element 

from 2s state; see text. 

. 



Table V. Summary of experimental pionic x-ray yields. 

Energy Yield 
Element Line (kev) Present 

Yield 
Others 

Ka 24.2 8.26+0.03 - 

K B 28.8 0.06+0.0l - 

K 30 0.018+0.005" 
Y - 

All K 0.34+0.05 - 

KulAll K 0.7620.02 

Be 9 
Ka 

42.3 0.PDtO.01 - 

K 53 0.01390.084" 
Y - 

All K 0,1490.02 - 



Table V. (continued) 

Energy Yield 
Element Line (keV) Present 

Y i e l d  
Others 

All L 

KB 194 

A l l  K 



Table V. (continued) 

- - 

Energy Yield Yield 
Element Line QkeV) Present  Others 

All L 0.59+P.06 

,25 .9  0.46+0.04 - 
M B 38 0.040t0.008 - 

M . 43 0.004+0,002~ 
'd - 

All M 0.51+0.05 - 
M a / A l l  M 0,91+0.02 - 

Nol 12 0.17+0.04 - 

a. Includes contr ibut ions  from all higher-energy t r a n s i t i o n s  i n  the series. 

b ~ .  Koch e t  a l .  (1969), Ref. 20. -- 
e IVI, Camac e t  al. (1955), Ref. 62. -- 
d ~ .  Berezin e t  al. (1970), Ref. 16. -- 
e 

M. Stearns e t  al .  (1957), Ref. 5. -- 
'R. Kunselman (1969), Ref. 63. 

g ~ ,  m c h  -- e t  a l ,  (19681, Ref. 19. 

%. B. Stearns -- e t  al. (19571, Ref. 6. 

c et al. (19551, Ref. 3. -- 





6 Table VII. Nuclear capture schedule for pions in  L i  . 
Listed are the number of pions captured from each 

state  per atomically captured pion. 

Total d-state capture: %I X lo-' 

Total p-state capture: 0.60+0.09 - 

Total s-state capture: 0.40+_0.09 



Table VIII, Total electromagnetic decay rates for levels n - c 9 

in muonic assuming a l l  five electron states are f i l l e d .  
14 -1 Units are 10 see . Auger processes dominate above the dashed l i n e ,  

The atom is expected to be partially ionized above the solid l i ne ;  see text .  

BThe 2se+2p1s toaneition fe  expected to depopulate the 2s ata te  at a 
rate greatly exceedin8 the 2s+le Auger rate. See d ieme ion ,  Section 
IV.C. 



Table IX, Parameters of the nuclear optical potential, 

where ~ . l  is the pion rest  mass. 

From experiment, From experiment, 
Parame ten: ~ackens tossa after Anderson e t  a l .  b -- ~heory' 

(1) ( 2  1 ( 3 )  

' ~ e f .  4 3 .  Eqs. (16) have been used to  compare the parameters of Table I ,  
Ref. 4 3 ,  with those of columns (1) and (3) above. 

C 
Mrell and Ericson, Ref, 21, 
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X. FIGURES 

Figure Captions 

1. Counter geometry, t a r g e t  and de tec to r  pos i t ions  i n  t h e  experiment, 

The degrader upstream of  counter 1 w a s  used only during the snr~onic 

x-ray runs. 

2. Block diagram o f  t h e  e lec t ron ics .  The cyclotron-RF t r i g g e r  p u l s e  

provided a timing reference  f o r  gat ing t h e  equipment o f f  du r ing  the 

prompt (unstretched) p a r t  of t h e  beam s p i l l .  DGG = Delay Gate 

Generator; D = Discriminator; FA = Fast  Amplifier; C = (Coincidenee 

un i t ;  S = Scaler ;  LG = Logic Gate (and ampl i f i e r ) ;  LSD = Logic 

Shaper and Delay; DDLA = Double-Delay-Line Amplifier; SGTA = [Single- 

Channel Timing Analyser; TAC = Time-to-Amplitude Converter; PHA = 

Pulse-Height Analyser. 

3. D i f f e r e n t i a l  range curve obtained using a 3 . 6  g/cm 
2 c12 

target , 

9 4. Timing spectrum f o r  p ion ic  x rays  from B e  . The energy range 

spanned was Q, 8 keV t o  % 50 keV. Timing information f o r  the "goodP" 

events i s  s to red  i n  t h e  upper 200 channels of  t h e  400-channel 

analyser  . 
9 5. (a) B e  p ion ic  x-ray spectrum. The combined counts i n  eight adja- 

12 
cent  channels have been p lo t t ed .  (b) C pion ic  x-ray s p e ~ ~ r u m ~  

(c) 016 pion ic  x-ray spectrum. I n  (b) and (c) t h e  combined counts 

i n  four  adjacent  channels have been p lo t t ed .  Addit ional  evidence 

f o r  t h e  contaminant peaks from aluminum and oxygen were obtainled 

from o t h e r  spect ra .  



6, Net absolute  de tec to r  e f f i c i e n c i e s  versus  energyp @ , obtained using 

c a l i b r a t e d  sources, Ref. 54. A, relative values obtained using an 

uncal ibra ted  ~a~~~ source. C] , relative values ca lcu la ted  from known 

de tec to r  c h a r a c t e r i s t i c s .  The source-detector d is tances  were 13.6 

em, 12.3 em, and 15.3 cm f o r  t h e  S i (L i ) ,  p lanar  Ge(Li), and coaxia l  

Ge(Li) respect ively .  

' 7 ,  P l o t s  of e f f e c t i v e  charges experienced by t h e  muon and t h e  K-shell 

12  
e lec t rons  when t h e  muon is in state (n, R = n - 1) i n  C . It i s  

assumed t h a t  a l l  a v a i l a b l e  e l e c t r o n  states a r e  f i l l e d .  The " f i e ld"  

values  are used t o  c a l c u l a t e  wave functions;  t h e  " p o t e n t i d "  values 

a r e  used t o  c a l c u l a t e  t r a n s i t i o n  energies ,  

8. Predic ted  x-ray y i e l d s  versus 2 f o r  muons i n  C12.  A modified s t a t i a -  

t i c a l  d i s t r i b u t i o n  Eq,  (12) w a s  used f o r  t h e  ini t ial  populat ion i n  

N = 9, and e l e c t r o n - r e f i l l i n g  times have been assumed s h o r t  compared 

t o  t y p i c a l  muon t r a n s i t i o n  t i m e s .  A weighted average of gl, a-2, s3, 
and a is  taken as t h e  f o r  t h e  cascade. -4 

12 
9, Predic ted  p ion ic  x-ray y i e l d s  i n  C versus I' (cap) and f o r  th ree  

2p 

values  s f  - a .  - a = 4-0.49 - + 0.09 was determined by t h e  L /L r a t i o ;  B (3 

t h e  experimental La y i e l d  is  c l e a r l y  cons i s t en t  with t h i s  choice. 

10. Popvlat ion p robab i l i ty  PNR versus R i n  i n i t i a l  l e v e l  N = 9; @,d i s -  

t r i b u t i o n  which b e s t  dupl ica tes  experimental y i e l d s  i n  muonic Mg. 

For comparison we show A ,  a s t a t i s t i c a l  d i s t r i b u t i o n ,  and 8 , a 

m d i f i e d  s t a t i s t i c a l  d i s t r i b u t i o n  Eq. (12) wi th  - a = +0.40. 

11. Reduced 2p-level widths versus atomic number A. The two curves are 

based on semiphenomenological o p t i c a l  p o t e n t i a l s  f o r  t h e  pion-nucleus 

i n t e r a c t i o n  with parameters obtained by f i t t i n g  p ionic  x-ray data.  

The s o l i d  l i n e  r e s u l t s  from t h e  bes t  f i t  t o  s e l e c t e d  data  (see t e x t )  
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which bc luded  only d i r ec t ly  rmeasured l i n e  widths ( e , ~ . ,  3d-2p 

l i n e  widths f o r  t a rge t s  with A > 30); t h i s  curve correepcxnde to the 

po ten t ia l  of Eqs, (8) and (15) w ns tan t  parmeters  of 

column (2), Table I X .  The broken l i n e  the frdt by 

Backenstoss t o  x-ray data which included the  CEW ind i rec t  w id th  

measurenaents (A) and the recently revised, d i r ec t ly  measured 2p 

width fo r  p31 ( A ) ;  see Ref. 18. The other  experimental po in t s  are 

a s  follows: 8, d i r ec t ly  measured linewidths f o r  selected nuclei 

(see text); Q , ind i rec t  measurements of Berezin s&. (Ref, 16);  

and 8 ,  r e su l t s  of the  present work. 
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